清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

A distance correlation-based Kriging modeling method for high-dimensional problems

克里金 变异函数 维数(图论) 数学优化 计算机科学 空间相关性 算法 过程(计算) 功能(生物学) 数学 统计 机器学习 进化生物学 生物 操作系统 纯数学
作者
Chongbo Fu,Peng Wang,Liang Zhao,Xinjing Wang
出处
期刊:Knowledge Based Systems [Elsevier]
卷期号:206: 106356-106356 被引量:38
标识
DOI:10.1016/j.knosys.2020.106356
摘要

Abstract By using the kriging modeling method, the design efficiency of computationally expensive optimization problems is greatly improved. However, as the dimension of the problem increases, the time for constructing a kriging model increases significantly. It is unaffordable for limited computing resources, especially for the cases where the kriging model needs to be constructed frequently. To address this challenge, an efficient kriging modeling method which utilizes a new spatial correlation function, is developed in this article. More specifically, for the characteristics of optimized hyper-parameters, distance correlation (DIC) is used to estimate the relative magnitude of hyper-parameters in the new correlation function. This translates the hyper-parameter tuning process into a one-dimensional optimization problem, which greatly improves the modeling efficiency. Then the corrector step is used to further exploit the hyper-parameters space. The proposed method is validated through nine representative numerical benchmarks from 10-D to 60-D and an engineering problem with 35 variables. Results show that when compared with the conventional kriging, the modeling time of the proposed method is dramatically reduced. For the problems with more than 30 variables, the proposed method can obtain a more accurate kriging model. Besides, the proposed method is compared with another state-of-the-art high-dimensional Kriging modeling method, called KPLS+K. Results show that the proposed method has higher modeling accuracy for most problems, while the modeling time of the two methods is comparable. It can be conclusive that the proposed method is very promising and can be used to significantly improve the efficiency for approximating high-dimensional expensive problems.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
喜悦的唇彩完成签到,获得积分10
14秒前
科研通AI2S应助arsenal采纳,获得10
19秒前
23秒前
39秒前
arsenal完成签到 ,获得积分10
1分钟前
白天亮完成签到,获得积分10
1分钟前
雪山飞龙发布了新的文献求助10
1分钟前
雪山飞龙发布了新的文献求助10
1分钟前
1分钟前
2分钟前
貔貅完成签到,获得积分10
2分钟前
范特西完成签到 ,获得积分10
2分钟前
Heart_of_Stone完成签到 ,获得积分10
3分钟前
3分钟前
3分钟前
3分钟前
共享精神应助科研通管家采纳,获得10
3分钟前
科研通AI2S应助科研通管家采纳,获得10
3分钟前
赘婿应助科研通管家采纳,获得10
3分钟前
3分钟前
量子星尘发布了新的文献求助10
4分钟前
4分钟前
4分钟前
ven发布了新的文献求助30
4分钟前
ven完成签到,获得积分20
4分钟前
4分钟前
uwasa完成签到,获得积分10
4分钟前
科研通AI6应助Migue采纳,获得10
4分钟前
5分钟前
感动初蓝完成签到 ,获得积分10
5分钟前
6分钟前
6分钟前
知性的剑身完成签到,获得积分10
7分钟前
Migue发布了新的文献求助10
7分钟前
7分钟前
7分钟前
早睡早起身体好Q完成签到 ,获得积分10
7分钟前
科研通AI2S应助科研通管家采纳,获得10
7分钟前
BowieHuang应助科研通管家采纳,获得10
7分钟前
8分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Nonlinear Problems of Elasticity 3000
List of 1,091 Public Pension Profiles by Region 1581
Encyclopedia of Agriculture and Food Systems Third Edition 1500
Minimizing the Effects of Phase Quantization Errors in an Electronically Scanned Array 1000
Specialist Periodical Reports - Organometallic Chemistry Organometallic Chemistry: Volume 46 1000
Current Trends in Drug Discovery, Development and Delivery (CTD4-2022) 800
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5534485
求助须知:如何正确求助?哪些是违规求助? 4622559
关于积分的说明 14582640
捐赠科研通 4562673
什么是DOI,文献DOI怎么找? 2500297
邀请新用户注册赠送积分活动 1479846
关于科研通互助平台的介绍 1451046