A distance correlation-based Kriging modeling method for high-dimensional problems

克里金 变异函数 维数(图论) 数学优化 计算机科学 空间相关性 算法 过程(计算) 功能(生物学) 数学 统计 机器学习 进化生物学 纯数学 生物 操作系统
作者
Chongbo Fu,Peng Wang,Liang Zhao,Xinjing Wang
出处
期刊:Knowledge Based Systems [Elsevier BV]
卷期号:206: 106356-106356 被引量:38
标识
DOI:10.1016/j.knosys.2020.106356
摘要

Abstract By using the kriging modeling method, the design efficiency of computationally expensive optimization problems is greatly improved. However, as the dimension of the problem increases, the time for constructing a kriging model increases significantly. It is unaffordable for limited computing resources, especially for the cases where the kriging model needs to be constructed frequently. To address this challenge, an efficient kriging modeling method which utilizes a new spatial correlation function, is developed in this article. More specifically, for the characteristics of optimized hyper-parameters, distance correlation (DIC) is used to estimate the relative magnitude of hyper-parameters in the new correlation function. This translates the hyper-parameter tuning process into a one-dimensional optimization problem, which greatly improves the modeling efficiency. Then the corrector step is used to further exploit the hyper-parameters space. The proposed method is validated through nine representative numerical benchmarks from 10-D to 60-D and an engineering problem with 35 variables. Results show that when compared with the conventional kriging, the modeling time of the proposed method is dramatically reduced. For the problems with more than 30 variables, the proposed method can obtain a more accurate kriging model. Besides, the proposed method is compared with another state-of-the-art high-dimensional Kriging modeling method, called KPLS+K. Results show that the proposed method has higher modeling accuracy for most problems, while the modeling time of the two methods is comparable. It can be conclusive that the proposed method is very promising and can be used to significantly improve the efficiency for approximating high-dimensional expensive problems.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
零四零零柒贰完成签到 ,获得积分10
6秒前
刘英坤完成签到,获得积分10
7秒前
7秒前
张登秀关注了科研通微信公众号
11秒前
cbf完成签到,获得积分10
12秒前
xxxxyyyy1完成签到 ,获得积分10
12秒前
Yh_alive完成签到,获得积分10
13秒前
15秒前
田様应助丰富如南采纳,获得10
20秒前
啦啦啦啦啦完成签到 ,获得积分10
21秒前
眼睛大的乐儿完成签到,获得积分10
22秒前
23秒前
玥月完成签到 ,获得积分10
23秒前
在九月完成签到 ,获得积分10
24秒前
yk完成签到,获得积分10
26秒前
听风随影完成签到,获得积分20
27秒前
ding应助美好向彤采纳,获得10
28秒前
领导范儿应助ZhuYJ采纳,获得10
30秒前
听风随影发布了新的文献求助10
30秒前
沉默不言完成签到,获得积分20
31秒前
快乐仙知完成签到 ,获得积分10
35秒前
沉默不言发布了新的文献求助30
36秒前
可爱的函函应助听风随影采纳,获得10
37秒前
上官若男应助4356采纳,获得10
38秒前
41秒前
42秒前
43秒前
我先睡了发布了新的文献求助10
44秒前
ZhuYJ发布了新的文献求助10
46秒前
LL爱读书发布了新的文献求助10
47秒前
许三问完成签到 ,获得积分0
47秒前
48秒前
49秒前
空山新雨完成签到,获得积分10
50秒前
51秒前
52秒前
Kenzonvay发布了新的文献求助10
52秒前
英俊的铭应助春春采纳,获得10
53秒前
善良海云发布了新的文献求助10
55秒前
Jiangzhibing发布了新的文献求助10
56秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
Interpretation of Mass Spectra, Fourth Edition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3951007
求助须知:如何正确求助?哪些是违规求助? 3496402
关于积分的说明 11081862
捐赠科研通 3226913
什么是DOI,文献DOI怎么找? 1784005
邀请新用户注册赠送积分活动 868114
科研通“疑难数据库(出版商)”最低求助积分说明 801003