A distance correlation-based Kriging modeling method for high-dimensional problems

克里金 变异函数 维数(图论) 数学优化 计算机科学 空间相关性 算法 过程(计算) 功能(生物学) 数学 统计 机器学习 进化生物学 纯数学 生物 操作系统
作者
Chongbo Fu,Peng Wang,Liang Zhao,Xinjing Wang
出处
期刊:Knowledge Based Systems [Elsevier BV]
卷期号:206: 106356-106356 被引量:38
标识
DOI:10.1016/j.knosys.2020.106356
摘要

Abstract By using the kriging modeling method, the design efficiency of computationally expensive optimization problems is greatly improved. However, as the dimension of the problem increases, the time for constructing a kriging model increases significantly. It is unaffordable for limited computing resources, especially for the cases where the kriging model needs to be constructed frequently. To address this challenge, an efficient kriging modeling method which utilizes a new spatial correlation function, is developed in this article. More specifically, for the characteristics of optimized hyper-parameters, distance correlation (DIC) is used to estimate the relative magnitude of hyper-parameters in the new correlation function. This translates the hyper-parameter tuning process into a one-dimensional optimization problem, which greatly improves the modeling efficiency. Then the corrector step is used to further exploit the hyper-parameters space. The proposed method is validated through nine representative numerical benchmarks from 10-D to 60-D and an engineering problem with 35 variables. Results show that when compared with the conventional kriging, the modeling time of the proposed method is dramatically reduced. For the problems with more than 30 variables, the proposed method can obtain a more accurate kriging model. Besides, the proposed method is compared with another state-of-the-art high-dimensional Kriging modeling method, called KPLS+K. Results show that the proposed method has higher modeling accuracy for most problems, while the modeling time of the two methods is comparable. It can be conclusive that the proposed method is very promising and can be used to significantly improve the efficiency for approximating high-dimensional expensive problems.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
亦绿完成签到,获得积分10
刚刚
张奎发布了新的文献求助10
2秒前
俊逸成危完成签到,获得积分10
3秒前
陈洋_复旦大学完成签到,获得积分10
3秒前
3秒前
gmp完成签到,获得积分20
3秒前
3秒前
去看海嘛发布了新的文献求助10
4秒前
英俊的铭应助十四采纳,获得10
4秒前
5秒前
6秒前
orixero应助ychen采纳,获得10
7秒前
7秒前
cc发布了新的文献求助10
7秒前
7秒前
CipherSage应助张奎采纳,获得10
10秒前
我爱大肠发布了新的文献求助10
10秒前
tianhaizhi发布了新的文献求助10
11秒前
贪玩的访风完成签到 ,获得积分10
11秒前
12秒前
13秒前
WZQ发布了新的文献求助10
13秒前
14秒前
InSea完成签到,获得积分10
15秒前
huxiao发布了新的文献求助30
16秒前
股份我发布了新的文献求助10
16秒前
郝富完成签到,获得积分10
16秒前
gmp关注了科研通微信公众号
16秒前
星辰大海应助健康的傲白采纳,获得10
17秒前
Lcy0609完成签到 ,获得积分10
19秒前
兰兰发布了新的文献求助10
19秒前
今后应助huxiao采纳,获得10
20秒前
fhvvg驳回了bkagyin应助
20秒前
乔治韦斯莱完成签到 ,获得积分10
20秒前
科研通AI6应助zzww采纳,获得10
21秒前
科研通AI6应助放逐采纳,获得10
22秒前
燃之一手完成签到 ,获得积分10
23秒前
TXQ发布了新的文献求助10
23秒前
Li应助ceeray23采纳,获得20
23秒前
情怀应助周燕梅采纳,获得10
23秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Hydrothermal Circulation and Seawater Chemistry: Links and Feedbacks 1200
A Half Century of the Sonogashira Reaction 1000
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
World Nuclear Fuel Report: Global Scenarios for Demand and Supply Availability 2025-2040 800
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 500
Modern Britain, 1750 to the Present (求助第2版!!!) 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5159157
求助须知:如何正确求助?哪些是违规求助? 4353699
关于积分的说明 13556582
捐赠科研通 4197328
什么是DOI,文献DOI怎么找? 2302011
邀请新用户注册赠送积分活动 1302035
关于科研通互助平台的介绍 1247140