A distance correlation-based Kriging modeling method for high-dimensional problems

克里金 变异函数 维数(图论) 数学优化 计算机科学 空间相关性 算法 过程(计算) 功能(生物学) 数学 统计 机器学习 进化生物学 纯数学 生物 操作系统
作者
Chongbo Fu,Peng Wang,Liang Zhao,Xinjing Wang
出处
期刊:Knowledge Based Systems [Elsevier BV]
卷期号:206: 106356-106356 被引量:38
标识
DOI:10.1016/j.knosys.2020.106356
摘要

Abstract By using the kriging modeling method, the design efficiency of computationally expensive optimization problems is greatly improved. However, as the dimension of the problem increases, the time for constructing a kriging model increases significantly. It is unaffordable for limited computing resources, especially for the cases where the kriging model needs to be constructed frequently. To address this challenge, an efficient kriging modeling method which utilizes a new spatial correlation function, is developed in this article. More specifically, for the characteristics of optimized hyper-parameters, distance correlation (DIC) is used to estimate the relative magnitude of hyper-parameters in the new correlation function. This translates the hyper-parameter tuning process into a one-dimensional optimization problem, which greatly improves the modeling efficiency. Then the corrector step is used to further exploit the hyper-parameters space. The proposed method is validated through nine representative numerical benchmarks from 10-D to 60-D and an engineering problem with 35 variables. Results show that when compared with the conventional kriging, the modeling time of the proposed method is dramatically reduced. For the problems with more than 30 variables, the proposed method can obtain a more accurate kriging model. Besides, the proposed method is compared with another state-of-the-art high-dimensional Kriging modeling method, called KPLS+K. Results show that the proposed method has higher modeling accuracy for most problems, while the modeling time of the two methods is comparable. It can be conclusive that the proposed method is very promising and can be used to significantly improve the efficiency for approximating high-dimensional expensive problems.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
小蘑菇应助干净利落采纳,获得10
1秒前
希望天下0贩的0应助星辰采纳,获得10
1秒前
张世豪发布了新的文献求助10
2秒前
所所应助津海007采纳,获得10
2秒前
Hello应助pamela采纳,获得10
3秒前
周悠悠完成签到,获得积分10
3秒前
爱笑的冷风完成签到 ,获得积分10
3秒前
坚定惜梦发布了新的文献求助10
4秒前
4秒前
量子星尘发布了新的文献求助10
5秒前
Haonan完成签到,获得积分10
9秒前
开心颜演完成签到,获得积分20
10秒前
Titter完成签到,获得积分10
11秒前
11秒前
干净利落完成签到,获得积分10
14秒前
灵萱完成签到,获得积分10
14秒前
Banana完成签到 ,获得积分10
14秒前
15秒前
15秒前
张世豪完成签到,获得积分20
16秒前
干净利落发布了新的文献求助10
16秒前
隐形的傲易完成签到,获得积分10
17秒前
鄢廷芮完成签到 ,获得积分10
17秒前
mo完成签到 ,获得积分10
18秒前
浅诺完成签到,获得积分10
18秒前
打打应助灵萱采纳,获得20
18秒前
大方的蓝完成签到 ,获得积分10
19秒前
狗东西发布了新的文献求助10
19秒前
可耐的思枫完成签到,获得积分10
19秒前
20秒前
浮游应助肯瑞恩哭哭采纳,获得10
20秒前
田様应助风清扬采纳,获得10
21秒前
端庄的石头完成签到 ,获得积分10
21秒前
pamela发布了新的文献求助10
21秒前
开心颜演发布了新的文献求助30
21秒前
humble完成签到 ,获得积分10
21秒前
22秒前
22秒前
A溶大美噶完成签到,获得积分10
22秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
计划经济时代的工厂管理与工人状况(1949-1966)——以郑州市国营工厂为例 500
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
The Pedagogical Leadership in the Early Years (PLEY) Quality Rating Scale 410
Modern Britain, 1750 to the Present (第2版) 300
Writing to the Rhythm of Labor Cultural Politics of the Chinese Revolution, 1942–1976 300
Lightning Wires: The Telegraph and China's Technological Modernization, 1860-1890 250
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4601699
求助须知:如何正确求助?哪些是违规求助? 4011262
关于积分的说明 12418861
捐赠科研通 3691306
什么是DOI,文献DOI怎么找? 2035016
邀请新用户注册赠送积分活动 1068302
科研通“疑难数据库(出版商)”最低求助积分说明 952792