A distance correlation-based Kriging modeling method for high-dimensional problems

克里金 变异函数 维数(图论) 数学优化 计算机科学 空间相关性 算法 过程(计算) 功能(生物学) 数学 统计 机器学习 进化生物学 生物 操作系统 纯数学
作者
Chongbo Fu,Peng Wang,Liang Zhao,Xinjing Wang
出处
期刊:Knowledge Based Systems [Elsevier]
卷期号:206: 106356-106356 被引量:35
标识
DOI:10.1016/j.knosys.2020.106356
摘要

Abstract By using the kriging modeling method, the design efficiency of computationally expensive optimization problems is greatly improved. However, as the dimension of the problem increases, the time for constructing a kriging model increases significantly. It is unaffordable for limited computing resources, especially for the cases where the kriging model needs to be constructed frequently. To address this challenge, an efficient kriging modeling method which utilizes a new spatial correlation function, is developed in this article. More specifically, for the characteristics of optimized hyper-parameters, distance correlation (DIC) is used to estimate the relative magnitude of hyper-parameters in the new correlation function. This translates the hyper-parameter tuning process into a one-dimensional optimization problem, which greatly improves the modeling efficiency. Then the corrector step is used to further exploit the hyper-parameters space. The proposed method is validated through nine representative numerical benchmarks from 10-D to 60-D and an engineering problem with 35 variables. Results show that when compared with the conventional kriging, the modeling time of the proposed method is dramatically reduced. For the problems with more than 30 variables, the proposed method can obtain a more accurate kriging model. Besides, the proposed method is compared with another state-of-the-art high-dimensional Kriging modeling method, called KPLS+K. Results show that the proposed method has higher modeling accuracy for most problems, while the modeling time of the two methods is comparable. It can be conclusive that the proposed method is very promising and can be used to significantly improve the efficiency for approximating high-dimensional expensive problems.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
曲蔚然发布了新的文献求助30
1秒前
liuxl完成签到,获得积分10
1秒前
长隆完成签到 ,获得积分10
3秒前
3秒前
852应助YukiXu采纳,获得10
4秒前
4秒前
jijizz发布了新的文献求助10
4秒前
yyyyy发布了新的文献求助10
4秒前
zhappy发布了新的文献求助20
4秒前
5秒前
稳重的八宝粥完成签到 ,获得积分10
6秒前
6秒前
xx关闭了xx文献求助
6秒前
7秒前
9秒前
10秒前
su发布了新的文献求助10
10秒前
小马甲应助鳗鱼灵寒采纳,获得10
10秒前
calbee发布了新的文献求助10
11秒前
lalala发布了新的文献求助10
12秒前
12秒前
张辰12536完成签到,获得积分10
13秒前
14秒前
程琳发布了新的文献求助10
14秒前
14秒前
15秒前
15秒前
88完成签到,获得积分10
15秒前
我是站长才怪应助谭谨川采纳,获得10
15秒前
1233发布了新的文献求助10
16秒前
bismarck7完成签到,获得积分10
16秒前
16秒前
16秒前
田様应助淡淡采白采纳,获得10
16秒前
赖道之发布了新的文献求助10
17秒前
calbee完成签到,获得积分10
17秒前
17秒前
和谐白云完成签到,获得积分10
18秒前
18秒前
18秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527928
求助须知:如何正确求助?哪些是违规求助? 3108040
关于积分的说明 9287614
捐赠科研通 2805836
什么是DOI,文献DOI怎么找? 1540070
邀请新用户注册赠送积分活动 716904
科研通“疑难数据库(出版商)”最低求助积分说明 709808