A distance correlation-based Kriging modeling method for high-dimensional problems

克里金 变异函数 维数(图论) 数学优化 计算机科学 空间相关性 算法 过程(计算) 功能(生物学) 数学 统计 机器学习 进化生物学 生物 操作系统 纯数学
作者
Chongbo Fu,Peng Wang,Liang Zhao,Xinjing Wang
出处
期刊:Knowledge Based Systems [Elsevier]
卷期号:206: 106356-106356 被引量:35
标识
DOI:10.1016/j.knosys.2020.106356
摘要

Abstract By using the kriging modeling method, the design efficiency of computationally expensive optimization problems is greatly improved. However, as the dimension of the problem increases, the time for constructing a kriging model increases significantly. It is unaffordable for limited computing resources, especially for the cases where the kriging model needs to be constructed frequently. To address this challenge, an efficient kriging modeling method which utilizes a new spatial correlation function, is developed in this article. More specifically, for the characteristics of optimized hyper-parameters, distance correlation (DIC) is used to estimate the relative magnitude of hyper-parameters in the new correlation function. This translates the hyper-parameter tuning process into a one-dimensional optimization problem, which greatly improves the modeling efficiency. Then the corrector step is used to further exploit the hyper-parameters space. The proposed method is validated through nine representative numerical benchmarks from 10-D to 60-D and an engineering problem with 35 variables. Results show that when compared with the conventional kriging, the modeling time of the proposed method is dramatically reduced. For the problems with more than 30 variables, the proposed method can obtain a more accurate kriging model. Besides, the proposed method is compared with another state-of-the-art high-dimensional Kriging modeling method, called KPLS+K. Results show that the proposed method has higher modeling accuracy for most problems, while the modeling time of the two methods is comparable. It can be conclusive that the proposed method is very promising and can be used to significantly improve the efficiency for approximating high-dimensional expensive problems.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
yeah发布了新的文献求助10
刚刚
炙热尔烟发布了新的文献求助10
刚刚
木wm发布了新的文献求助10
刚刚
1秒前
CWT发布了新的文献求助10
1秒前
杨花落尽子规啼完成签到,获得积分10
1秒前
2秒前
4秒前
5秒前
7秒前
7秒前
7秒前
bkagyin应助ysss0831采纳,获得10
11秒前
13秒前
13秒前
16秒前
19秒前
今后应助ty心明亮采纳,获得10
19秒前
19秒前
19秒前
可爱的函函应助asdfqwer采纳,获得10
20秒前
21秒前
太吾墨完成签到,获得积分10
21秒前
FashionBoy应助大方的不乐采纳,获得10
22秒前
寂寞的湘发布了新的文献求助50
23秒前
毓汐发布了新的文献求助10
25秒前
小杰杰完成签到 ,获得积分10
27秒前
28秒前
31秒前
32秒前
王小冉发布了新的文献求助10
33秒前
50257055应助木wm采纳,获得10
34秒前
asdfqwer发布了新的文献求助10
34秒前
CodeCraft应助斯文的山兰采纳,获得10
34秒前
大雪完成签到 ,获得积分10
34秒前
JamesPei应助__采纳,获得10
36秒前
38秒前
38秒前
王靓仔发布了新的文献求助10
38秒前
39秒前
高分求助中
进口的时尚——14世纪东方丝绸与意大利艺术 Imported Fashion:Oriental Silks and Italian Arts in the 14th Century 800
Glucuronolactone Market Outlook Report: Industry Size, Competition, Trends and Growth Opportunities by Region, YoY Forecasts from 2024 to 2031 800
Zeitschrift für Orient-Archäologie 500
The Collected Works of Jeremy Bentham: Rights, Representation, and Reform: Nonsense upon Stilts and Other Writings on the French Revolution 320
A new Species and a key to Indian species of Heirodula Burmeister (Mantodea: Mantidae) 300
Synchrotron X-Ray Methods in Clay Science 300
Experimental research on the vibration of aviation elbow tube by 21~35 MPa fluid pressure pulsation 300
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3345929
求助须知:如何正确求助?哪些是违规求助? 2972753
关于积分的说明 8656093
捐赠科研通 2653094
什么是DOI,文献DOI怎么找? 1452992
科研通“疑难数据库(出版商)”最低求助积分说明 672705
邀请新用户注册赠送积分活动 662574