已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

A distance correlation-based Kriging modeling method for high-dimensional problems

克里金 变异函数 维数(图论) 数学优化 计算机科学 空间相关性 算法 过程(计算) 功能(生物学) 数学 统计 机器学习 进化生物学 生物 操作系统 纯数学
作者
Chongbo Fu,Peng Wang,Liang Zhao,Xinjing Wang
出处
期刊:Knowledge Based Systems [Elsevier]
卷期号:206: 106356-106356 被引量:38
标识
DOI:10.1016/j.knosys.2020.106356
摘要

Abstract By using the kriging modeling method, the design efficiency of computationally expensive optimization problems is greatly improved. However, as the dimension of the problem increases, the time for constructing a kriging model increases significantly. It is unaffordable for limited computing resources, especially for the cases where the kriging model needs to be constructed frequently. To address this challenge, an efficient kriging modeling method which utilizes a new spatial correlation function, is developed in this article. More specifically, for the characteristics of optimized hyper-parameters, distance correlation (DIC) is used to estimate the relative magnitude of hyper-parameters in the new correlation function. This translates the hyper-parameter tuning process into a one-dimensional optimization problem, which greatly improves the modeling efficiency. Then the corrector step is used to further exploit the hyper-parameters space. The proposed method is validated through nine representative numerical benchmarks from 10-D to 60-D and an engineering problem with 35 variables. Results show that when compared with the conventional kriging, the modeling time of the proposed method is dramatically reduced. For the problems with more than 30 variables, the proposed method can obtain a more accurate kriging model. Besides, the proposed method is compared with another state-of-the-art high-dimensional Kriging modeling method, called KPLS+K. Results show that the proposed method has higher modeling accuracy for most problems, while the modeling time of the two methods is comparable. It can be conclusive that the proposed method is very promising and can be used to significantly improve the efficiency for approximating high-dimensional expensive problems.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
一梦发布了新的文献求助10
2秒前
Lucas应助liz_采纳,获得30
7秒前
科目三应助sxmt123456789采纳,获得10
9秒前
不期而遇完成签到 ,获得积分10
9秒前
10秒前
Lucas应助wangwang采纳,获得10
10秒前
科研通AI6应助single1145采纳,获得10
11秒前
超帅慕晴完成签到,获得积分10
11秒前
jzx完成签到,获得积分10
11秒前
13秒前
lankeren完成签到,获得积分10
16秒前
木昆完成签到 ,获得积分10
22秒前
24秒前
Chi_bio完成签到,获得积分10
26秒前
难过的醉香完成签到,获得积分10
26秒前
28秒前
wangwang发布了新的文献求助10
28秒前
Tonson完成签到,获得积分10
31秒前
爆米花应助sxmt123456789采纳,获得10
31秒前
456完成签到 ,获得积分10
33秒前
邬稀雅发布了新的文献求助10
34秒前
36秒前
wangwang完成签到,获得积分10
37秒前
38秒前
dydydyd完成签到,获得积分10
38秒前
licheng完成签到,获得积分10
39秒前
nanshu完成签到 ,获得积分10
40秒前
要减肥火车完成签到 ,获得积分10
40秒前
41秒前
复杂如音发布了新的文献求助20
44秒前
李健的粉丝团团长应助mmmm采纳,获得10
44秒前
tcmlida完成签到,获得积分10
46秒前
明亮的老四完成签到 ,获得积分10
48秒前
小城故事和冰雨完成签到,获得积分10
49秒前
51秒前
JSEILWQ完成签到 ,获得积分10
53秒前
27完成签到 ,获得积分10
53秒前
桃桃星冰乐完成签到,获得积分10
53秒前
55秒前
铮铮完成签到,获得积分10
58秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to Early Childhood Education 1000
List of 1,091 Public Pension Profiles by Region 921
Aerospace Standards Index - 2025 800
Identifying dimensions of interest to support learning in disengaged students: the MINE project 800
流动的新传统主义与新生代农民工的劳动力再生产模式变迁 500
Historical Dictionary of British Intelligence (2014 / 2nd EDITION!) 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5432070
求助须知:如何正确求助?哪些是违规求助? 4544825
关于积分的说明 14194262
捐赠科研通 4464067
什么是DOI,文献DOI怎么找? 2446949
邀请新用户注册赠送积分活动 1438286
关于科研通互助平台的介绍 1415081