材料科学
生物相容性
自愈水凝胶
复合数
控制释放
复合材料
石墨烯
纳米颗粒
纳米技术
化学工程
高分子化学
工程类
冶金
作者
Yingying Liu,Qing Fan,Ying Huo,Chao Liu,Bin Li,Youming Li
标识
DOI:10.1021/acsami.0c15465
摘要
The development of intelligent and multifunctional hydrogels having photothermal properties, good mechanical properties, sustained drug release abilities with low burst release, antibacterial properties, and biocompatibility is highly desirable in the biomaterial field. Herein, mesoporous polydopamine (MPDA) nanoparticles wrapped with graphene oxide (GO) were physically cross-linked in cellulose nanofibril (CNF) hydrogel to obtain a novel MPDA@GO/CNF composite hydrogel for controllable drug release. MPDA nanoparticles exhibited a high drug loading ratio (up to 35 wt %) for tetracycline hydrochloride (TH). GO was used to encapsulate MPDA nanoparticles for extending the drug release time and reinforcing the physical strength of the obtained hydrogel. The mechanical strength of the as-fabricated MPDA@GO/CNF composite hydrogel was five times greater compared to that of the pure CNF hydrogel. Drug release experiments demonstrated that burst release behavior was significantly reduced by adding MPDA@GO. The drug release time of the MPDA@GO/CNF composite hydrogel was 3 times and 7.2 times longer than that of the polydopamine/CNF hydrogel and pure CNF hydrogel, respectively. The sustained and controlled drug release behaviors of the composite hydrogel were highly dependent on the proportion of MPDA and GO. Moreover, the rate of drug release could be accelerated by near-infrared (NIR) light irradiation and pH value change. The drug release kinetics of the as-prepared composite hydrogel was well described by the Korsmeyer–Peppas model, and the drug release mechanism of TH from the composite hydrogel was anomalous transport. Importantly, this carefully designed MPDA@GO/CNF composite hydrogel showed good biocompatibility through an in vitro cytotoxicity test. In particular, the toxicity of GO was well shielded by the CNF hydrogel. Therefore, this novel MPDA@GO/CNF composite hydrogel with an encapsulation structure for controllable drug release and toxicity shielding of GO could be used as a very promising controlled drug delivery carrier, which may have potential applications for chemical and physical therapies.
科研通智能强力驱动
Strongly Powered by AbleSci AI