Image super-resolution via channel attention and spatial graph convolutional network

计算机科学 邻接矩阵 卷积神经网络 图形 人工智能 像素 渲染(计算机图形) 特征(语言学) 邻接表 频道(广播) 模式识别(心理学) 空间分析 算法 理论计算机科学 数学 哲学 统计 语言学 计算机网络
作者
Yue Yang,Yong Qi
出处
期刊:Pattern Recognition [Elsevier]
卷期号:112: 107798-107798 被引量:76
标识
DOI:10.1016/j.patcog.2020.107798
摘要

Recently, deep convolutional neural networks (CNNs) have been widely explored in single image super-resolution (SISR) and obtained remarkable performance. However, most of the existing CNN-based SR methods mainly focus on wider or deeper architecture design, neglecting to discover the latent relationship of features, hence limiting the representational ability of networks. To address this issue, we propose a channel attention and spatial graph convolutional network (CASGCN) for more powerful feature obtaining and feature correlations modeling. The CASGCN is formed by several channel attention and spatial graph (CASG) blocks that incorporate global spatial and channel inter-dependencies for rendering features of each pixel. Inside the CASG block, channel branch and spatial branch are first arranged in a paralleled way, and then are concatenated to effectively learn the representation of each image pixel. Specifically, we use attention mechanism to extract informative features in channel branch while the spatial-aware graph is used in spatial branch to model the global self-similar information. Furthermore, the adjacency matrix in spatial-aware graph is dynamically generated via the Gram matrix to model global correlations between pixels and is shared across the whole network without auxiliary parameters. Extensive experiments on SISR with different degradation models show the effectiveness of our CASGCN in terms of quantitative and visual results.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
啦啦发布了新的文献求助10
刚刚
qiaokizhang发布了新的文献求助10
1秒前
ang发布了新的文献求助10
1秒前
yang完成签到,获得积分10
1秒前
2秒前
2秒前
婷婷完成签到,获得积分10
2秒前
2秒前
3秒前
bkagyin应助林煜昕采纳,获得10
4秒前
友好钢笔发布了新的文献求助10
4秒前
4秒前
三生有幸发布了新的文献求助20
4秒前
可达燊发布了新的文献求助10
4秒前
完美世界应助Jolin采纳,获得10
4秒前
li发布了新的文献求助10
4秒前
4秒前
4秒前
5秒前
Owen应助胡蝶采纳,获得10
5秒前
5秒前
5秒前
5秒前
SciGPT应助shishikai采纳,获得10
5秒前
6秒前
绵马紫萁发布了新的文献求助10
6秒前
纯真心情完成签到,获得积分20
6秒前
6秒前
哈哈发布了新的文献求助10
7秒前
忧伤的桐应助嘻嘻采纳,获得10
7秒前
科研通AI6应助柏听寒采纳,获得10
7秒前
惠凡白完成签到,获得积分20
7秒前
松鼠鳜鱼发布了新的文献求助10
8秒前
小蘑菇应助拼搏的飞薇采纳,获得10
8秒前
小王好饿完成签到 ,获得积分10
8秒前
万能图书馆应助offred采纳,获得10
8秒前
田様应助易今采纳,获得10
8秒前
8秒前
9秒前
0043发布了新的文献求助10
9秒前
高分求助中
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
The Victim–Offender Overlap During the Global Pandemic: A Comparative Study Across Western and Non-Western Countries 1000
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
King Tyrant 720
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5588003
求助须知:如何正确求助?哪些是违规求助? 4671093
关于积分的说明 14785596
捐赠科研通 4624167
什么是DOI,文献DOI怎么找? 2531527
邀请新用户注册赠送积分活动 1500191
关于科研通互助平台的介绍 1468200