Image super-resolution via channel attention and spatial graph convolutional network

计算机科学 邻接矩阵 卷积神经网络 图形 人工智能 像素 渲染(计算机图形) 特征(语言学) 邻接表 频道(广播) 模式识别(心理学) 空间分析 算法 理论计算机科学 数学 哲学 统计 语言学 计算机网络
作者
Yue Yang,Yong Qi
出处
期刊:Pattern Recognition [Elsevier]
卷期号:112: 107798-107798 被引量:76
标识
DOI:10.1016/j.patcog.2020.107798
摘要

Recently, deep convolutional neural networks (CNNs) have been widely explored in single image super-resolution (SISR) and obtained remarkable performance. However, most of the existing CNN-based SR methods mainly focus on wider or deeper architecture design, neglecting to discover the latent relationship of features, hence limiting the representational ability of networks. To address this issue, we propose a channel attention and spatial graph convolutional network (CASGCN) for more powerful feature obtaining and feature correlations modeling. The CASGCN is formed by several channel attention and spatial graph (CASG) blocks that incorporate global spatial and channel inter-dependencies for rendering features of each pixel. Inside the CASG block, channel branch and spatial branch are first arranged in a paralleled way, and then are concatenated to effectively learn the representation of each image pixel. Specifically, we use attention mechanism to extract informative features in channel branch while the spatial-aware graph is used in spatial branch to model the global self-similar information. Furthermore, the adjacency matrix in spatial-aware graph is dynamically generated via the Gram matrix to model global correlations between pixels and is shared across the whole network without auxiliary parameters. Extensive experiments on SISR with different degradation models show the effectiveness of our CASGCN in terms of quantitative and visual results.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
wanci应助乘风采纳,获得10
1秒前
ouyekk完成签到,获得积分10
2秒前
3秒前
3秒前
3秒前
萌羊发布了新的文献求助10
4秒前
4秒前
4秒前
爆米花应助科研通管家采纳,获得10
4秒前
爆米花应助科研通管家采纳,获得10
4秒前
4秒前
smottom应助科研通管家采纳,获得10
4秒前
smottom应助科研通管家采纳,获得10
4秒前
Ava应助科研通管家采纳,获得10
4秒前
Ava应助科研通管家采纳,获得10
4秒前
4秒前
4秒前
星辰大海应助科研通管家采纳,获得10
4秒前
星辰大海应助科研通管家采纳,获得10
4秒前
香菜完成签到,获得积分10
4秒前
华仔应助科研通管家采纳,获得10
4秒前
华仔应助科研通管家采纳,获得10
5秒前
BowieHuang应助科研通管家采纳,获得10
5秒前
BowieHuang应助科研通管家采纳,获得10
5秒前
5秒前
5秒前
5秒前
5秒前
smottom应助科研通管家采纳,获得10
5秒前
smottom应助科研通管家采纳,获得10
5秒前
juju1234完成签到,获得积分10
5秒前
5秒前
黑白发布了新的文献求助10
5秒前
5秒前
郭峰完成签到,获得积分20
5秒前
5秒前
5秒前
5秒前
BowieHuang应助科研通管家采纳,获得10
5秒前
ZHANG发布了新的文献求助20
6秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Forensic and Legal Medicine Third Edition 5000
Introduction to strong mixing conditions volume 1-3 5000
Aerospace Engineering Education During the First Century of Flight 3000
Agyptische Geschichte der 21.30. Dynastie 3000
Les Mantodea de guyane 2000
从k到英国情人 1700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5776553
求助须知:如何正确求助?哪些是违规求助? 5629807
关于积分的说明 15443193
捐赠科研通 4908648
什么是DOI,文献DOI怎么找? 2641367
邀请新用户注册赠送积分活动 1589320
关于科研通互助平台的介绍 1543933