重要提醒:2025.12.15 12:00-12:50期间发布的求助,下载出现了问题,现在已经修复完毕,请重新下载即可。如非文件错误,请不要进行驳回。

Image super-resolution via channel attention and spatial graph convolutional network

计算机科学 邻接矩阵 卷积神经网络 图形 人工智能 像素 渲染(计算机图形) 特征(语言学) 邻接表 频道(广播) 模式识别(心理学) 空间分析 算法 理论计算机科学 数学 哲学 统计 语言学 计算机网络
作者
Yue Yang,Yong Qi
出处
期刊:Pattern Recognition [Elsevier]
卷期号:112: 107798-107798 被引量:76
标识
DOI:10.1016/j.patcog.2020.107798
摘要

Recently, deep convolutional neural networks (CNNs) have been widely explored in single image super-resolution (SISR) and obtained remarkable performance. However, most of the existing CNN-based SR methods mainly focus on wider or deeper architecture design, neglecting to discover the latent relationship of features, hence limiting the representational ability of networks. To address this issue, we propose a channel attention and spatial graph convolutional network (CASGCN) for more powerful feature obtaining and feature correlations modeling. The CASGCN is formed by several channel attention and spatial graph (CASG) blocks that incorporate global spatial and channel inter-dependencies for rendering features of each pixel. Inside the CASG block, channel branch and spatial branch are first arranged in a paralleled way, and then are concatenated to effectively learn the representation of each image pixel. Specifically, we use attention mechanism to extract informative features in channel branch while the spatial-aware graph is used in spatial branch to model the global self-similar information. Furthermore, the adjacency matrix in spatial-aware graph is dynamically generated via the Gram matrix to model global correlations between pixels and is shared across the whole network without auxiliary parameters. Extensive experiments on SISR with different degradation models show the effectiveness of our CASGCN in terms of quantitative and visual results.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
搜集达人应助Mmmmm采纳,获得10
刚刚
周周发布了新的文献求助10
刚刚
刚刚
EKKO完成签到,获得积分10
刚刚
刚刚
SciGPT应助肖的花园采纳,获得10
刚刚
Owen应助香蕉若风采纳,获得30
刚刚
共享精神应助zyy采纳,获得10
1秒前
CS发布了新的文献求助10
1秒前
1秒前
2秒前
2秒前
2秒前
2秒前
乐观半凡发布了新的文献求助10
2秒前
2秒前
橙子发布了新的文献求助10
3秒前
汀沐完成签到 ,获得积分10
3秒前
orixero应助牛牛牛采纳,获得10
3秒前
大个应助wwwwww采纳,获得10
3秒前
寒生发布了新的文献求助10
3秒前
学渣小林发布了新的文献求助10
4秒前
大个应助jz采纳,获得10
4秒前
4秒前
CodeCraft应助Ent_采纳,获得10
5秒前
半山高完成签到,获得积分10
5秒前
高临霖发布了新的文献求助10
5秒前
Shirky发布了新的文献求助80
5秒前
6秒前
王源源发布了新的文献求助10
6秒前
潇洒的诗桃应助Chaimengdi采纳,获得10
6秒前
年糕111发布了新的文献求助10
7秒前
香蕉觅云应助dsl采纳,获得10
7秒前
7秒前
8秒前
砚草难书发布了新的文献求助10
8秒前
8秒前
Mmmmm完成签到,获得积分10
8秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1001
On the application of advanced modeling tools to the SLB analysis in NuScale. Part I: TRACE/PARCS, TRACE/PANTHER and ATHLET/DYN3D 500
L-Arginine Encapsulated Mesoporous MCM-41 Nanoparticles: A Study on In Vitro Release as Well as Kinetics 500
Haematolymphoid Tumours (Part A and Part B, WHO Classification of Tumours, 5th Edition, Volume 11) 400
Virus-like particles empower RNAi for effective control of a Coleopteran pest 400
Unraveling the Causalities of Genetic Variations - Recent Advances in Cytogenetics 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5466602
求助须知:如何正确求助?哪些是违规求助? 4570422
关于积分的说明 14325272
捐赠科研通 4496951
什么是DOI,文献DOI怎么找? 2463624
邀请新用户注册赠送积分活动 1452586
关于科研通互助平台的介绍 1427567