Supervised wetland classification using high spatial resolution optical, SAR, and LiDAR imagery

激光雷达 遥感 湿地 合成孔径雷达 计算机科学 测距 分割 上下文图像分类 环境科学 随机森林 图像分辨率 图像分割 分类器(UML) 人工智能 地理 图像(数学) 生态学 生物 电信
作者
Meisam Amani,Sahel Mahdavi,Olivier Berard
出处
期刊:Journal of Applied Remote Sensing [SPIE]
卷期号:14 (02): 1-1 被引量:32
标识
DOI:10.1117/1.jrs.14.024502
摘要

Wetlands are among the most valuable natural resources, being highly beneficial to both the environment and humans. Therefore, it is very important to map and monitor wetlands. Although various remote sensing datasets, including optical, synthetic aperture radar (SAR), light detection and ranging (LiDAR) imagery, have been widely applied to classify wetlands, it is still required to discuss the advantages/limitations of each of these datasets and suggest the best remote sensing methodology for wetland mapping. Thus, the Terra Nova National Park, located in Newfoundland, Canada, was initially selected as the study area to develop a supervised classification method along with object-based image analysis. To this end, different remote sensing-based scenarios were investigated using individual optical, SAR, and LiDAR datasets, as well as their various combinations. In addition, for achieving the highest accuracy, the effects of segmentation scales and the tuning parameters of the random forest (RF) classifier were examined. The results showed that a combination of optical, SAR, and LiDAR images with the segmentation scale of 150, the RF depth of 20, and the RF minimum sample number of 5 provided the highest classification accuracy with the overall accuracy of 87.2%. Moreover, based on the results, approximately 21% and 79% of the study area are covered by wetlands and nonwetlands, respectively. The proposed methodology shows an optimum scenario for future wetland classification tasks and can assist stakeholders in the effective management of wetlands and establishment of necessary policies.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
桐桐应助科研小末流采纳,获得10
1秒前
打打应助欣喜灵波采纳,获得10
1秒前
沐浴阳光的橙子完成签到,获得积分10
2秒前
科研通AI6应助体验采纳,获得10
2秒前
思源应助Luxuehua采纳,获得10
2秒前
qwqw完成签到,获得积分20
2秒前
赖林完成签到,获得积分10
3秒前
4秒前
瘦瘦初珍发布了新的文献求助10
4秒前
正直老九完成签到,获得积分10
7秒前
fz完成签到,获得积分10
7秒前
小青椒应助vampire采纳,获得30
8秒前
赘婿应助无辜问玉采纳,获得10
8秒前
9秒前
TTYYI完成签到 ,获得积分10
10秒前
xzj7789210发布了新的文献求助10
11秒前
番茄杀手完成签到 ,获得积分10
11秒前
W-水完成签到,获得积分10
12秒前
你倒是发啊完成签到,获得积分10
12秒前
nyddyy发布了新的文献求助10
13秒前
15秒前
李健应助小小采纳,获得10
15秒前
淡淡的幻竹完成签到,获得积分10
16秒前
17秒前
无花果应助iv采纳,获得10
18秒前
科研通AI6应助hellobaboon采纳,获得30
18秒前
18秒前
yoyo发布了新的文献求助10
18秒前
白子杨发布了新的文献求助10
19秒前
19秒前
lxyonline发布了新的文献求助10
23秒前
24秒前
orixero应助stephy采纳,获得10
25秒前
半岛铁盒发布了新的文献求助10
27秒前
28秒前
28秒前
万松辉发布了新的文献求助10
28秒前
28秒前
28秒前
28秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Fermented Coffee Market 2000
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
A Treatise on the Mathematical Theory of Elasticity 500
Critical Thinking: Tools for Taking Charge of Your Learning and Your Life 4th Edition 500
Comparing natural with chemical additive production 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5249686
求助须知:如何正确求助?哪些是违规求助? 4414256
关于积分的说明 13740250
捐赠科研通 4285494
什么是DOI,文献DOI怎么找? 2351664
邀请新用户注册赠送积分活动 1348409
关于科研通互助平台的介绍 1308094