Supervised wetland classification using high spatial resolution optical, SAR, and LiDAR imagery

激光雷达 遥感 湿地 合成孔径雷达 计算机科学 测距 分割 上下文图像分类 环境科学 随机森林 图像分辨率 图像分割 分类器(UML) 人工智能 地理 图像(数学) 生态学 电信 生物
作者
Meisam Amani,Sahel Mahdavi,Olivier Berard
出处
期刊:Journal of Applied Remote Sensing [SPIE]
卷期号:14 (02): 1-1 被引量:32
标识
DOI:10.1117/1.jrs.14.024502
摘要

Wetlands are among the most valuable natural resources, being highly beneficial to both the environment and humans. Therefore, it is very important to map and monitor wetlands. Although various remote sensing datasets, including optical, synthetic aperture radar (SAR), light detection and ranging (LiDAR) imagery, have been widely applied to classify wetlands, it is still required to discuss the advantages/limitations of each of these datasets and suggest the best remote sensing methodology for wetland mapping. Thus, the Terra Nova National Park, located in Newfoundland, Canada, was initially selected as the study area to develop a supervised classification method along with object-based image analysis. To this end, different remote sensing-based scenarios were investigated using individual optical, SAR, and LiDAR datasets, as well as their various combinations. In addition, for achieving the highest accuracy, the effects of segmentation scales and the tuning parameters of the random forest (RF) classifier were examined. The results showed that a combination of optical, SAR, and LiDAR images with the segmentation scale of 150, the RF depth of 20, and the RF minimum sample number of 5 provided the highest classification accuracy with the overall accuracy of 87.2%. Moreover, based on the results, approximately 21% and 79% of the study area are covered by wetlands and nonwetlands, respectively. The proposed methodology shows an optimum scenario for future wetland classification tasks and can assist stakeholders in the effective management of wetlands and establishment of necessary policies.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
xiao完成签到,获得积分10
1秒前
科研达人发布了新的文献求助10
2秒前
4秒前
嘉人发布了新的文献求助10
4秒前
李多鱼发布了新的文献求助10
4秒前
李健应助qyang采纳,获得10
6秒前
6秒前
司空铭完成签到,获得积分10
6秒前
传奇3应助善良的冥茗采纳,获得10
7秒前
我是老大应助QixuGuo采纳,获得10
7秒前
zz发布了新的文献求助10
7秒前
Liuzirong发布了新的文献求助10
10秒前
默默洋葱发布了新的文献求助50
11秒前
认真柜子完成签到,获得积分20
12秒前
13秒前
Owen应助王盼盼采纳,获得10
13秒前
13秒前
lzm发布了新的文献求助10
13秒前
李多鱼完成签到,获得积分20
14秒前
15秒前
15秒前
含蓄的鲜花完成签到,获得积分10
16秒前
16秒前
科研达人发布了新的文献求助30
19秒前
qyang发布了新的文献求助10
19秒前
20秒前
Alioth发布了新的文献求助10
20秒前
21秒前
24秒前
26秒前
29秒前
耿大海完成签到,获得积分10
31秒前
33秒前
默默洋葱完成签到,获得积分10
33秒前
36秒前
茶蛋完成签到 ,获得积分10
37秒前
38秒前
科研达人发布了新的文献求助10
39秒前
Dr. LJ发布了新的文献求助10
40秒前
turbohuan完成签到,获得积分10
41秒前
高分求助中
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
A new approach to the extrapolation of accelerated life test data 1000
Indomethacinのヒトにおける経皮吸収 400
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 370
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
Aktuelle Entwicklungen in der linguistischen Forschung 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3993032
求助须知:如何正确求助?哪些是违规求助? 3533888
关于积分的说明 11264048
捐赠科研通 3273597
什么是DOI,文献DOI怎么找? 1806129
邀请新用户注册赠送积分活动 882974
科研通“疑难数据库(出版商)”最低求助积分说明 809629