Supervised wetland classification using high spatial resolution optical, SAR, and LiDAR imagery

激光雷达 遥感 湿地 合成孔径雷达 计算机科学 测距 分割 上下文图像分类 环境科学 随机森林 图像分辨率 图像分割 分类器(UML) 人工智能 地理 图像(数学) 生态学 电信 生物
作者
Meisam Amani,Sahel Mahdavi,Olivier Berard
出处
期刊:Journal of Applied Remote Sensing [SPIE - International Society for Optical Engineering]
卷期号:14 (02): 1-1 被引量:32
标识
DOI:10.1117/1.jrs.14.024502
摘要

Wetlands are among the most valuable natural resources, being highly beneficial to both the environment and humans. Therefore, it is very important to map and monitor wetlands. Although various remote sensing datasets, including optical, synthetic aperture radar (SAR), light detection and ranging (LiDAR) imagery, have been widely applied to classify wetlands, it is still required to discuss the advantages/limitations of each of these datasets and suggest the best remote sensing methodology for wetland mapping. Thus, the Terra Nova National Park, located in Newfoundland, Canada, was initially selected as the study area to develop a supervised classification method along with object-based image analysis. To this end, different remote sensing-based scenarios were investigated using individual optical, SAR, and LiDAR datasets, as well as their various combinations. In addition, for achieving the highest accuracy, the effects of segmentation scales and the tuning parameters of the random forest (RF) classifier were examined. The results showed that a combination of optical, SAR, and LiDAR images with the segmentation scale of 150, the RF depth of 20, and the RF minimum sample number of 5 provided the highest classification accuracy with the overall accuracy of 87.2%. Moreover, based on the results, approximately 21% and 79% of the study area are covered by wetlands and nonwetlands, respectively. The proposed methodology shows an optimum scenario for future wetland classification tasks and can assist stakeholders in the effective management of wetlands and establishment of necessary policies.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
阿盛发布了新的文献求助10
1秒前
沉静妙菡发布了新的文献求助10
2秒前
2秒前
5秒前
6秒前
hhh完成签到 ,获得积分10
6秒前
善学以致用应助夜酒刺懒采纳,获得10
7秒前
7秒前
9秒前
思南0128发布了新的文献求助10
9秒前
10秒前
情怀应助an采纳,获得10
11秒前
科研通AI5应助Alive采纳,获得10
11秒前
11秒前
xubee完成签到,获得积分10
12秒前
14秒前
幽壑之潜蛟应助传统的盈采纳,获得10
14秒前
共享精神应助一二采纳,获得10
14秒前
闪闪的鹏博完成签到,获得积分10
16秒前
寒岱青衫笑完成签到,获得积分10
17秒前
17秒前
18秒前
Plucky发布了新的文献求助10
18秒前
18秒前
19秒前
19秒前
20秒前
科研通AI5应助小双采纳,获得10
20秒前
21秒前
FXQ112发布了新的文献求助10
21秒前
22秒前
22秒前
夜酒刺懒发布了新的文献求助10
23秒前
wang发布了新的文献求助10
23秒前
香蕉傲之发布了新的文献求助10
23秒前
良辰应助an采纳,获得10
24秒前
25秒前
Alive发布了新的文献求助10
26秒前
26秒前
27秒前
高分求助中
Continuum thermodynamics and material modelling 3000
Production Logging: Theoretical and Interpretive Elements 2500
Healthcare Finance: Modern Financial Analysis for Accelerating Biomedical Innovation 2000
Applications of Emerging Nanomaterials and Nanotechnology 1111
Les Mantodea de Guyane Insecta, Polyneoptera 1000
Theory of Block Polymer Self-Assembly 750
지식생태학: 생태학, 죽은 지식을 깨우다 700
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3482332
求助须知:如何正确求助?哪些是违规求助? 3072038
关于积分的说明 9125596
捐赠科研通 2763829
什么是DOI,文献DOI怎么找? 1516713
邀请新用户注册赠送积分活动 701746
科研通“疑难数据库(出版商)”最低求助积分说明 700563