Managing computational complexity using surrogate models: a critical review

替代模型 过程(计算) 计算机科学 工程设计过程 实现(概率) 计算模型 计算复杂性理论 不确定度量化 工业工程 风险分析(工程) 可靠性工程 机器学习 人工智能 算法 工程类 数学 机械工程 统计 操作系统 医学
作者
Reza Alizadeh,Janet K. Allen,Farrokh Mistree
出处
期刊:Research in Engineering Design [Springer Nature]
卷期号:31 (3): 275-298 被引量:284
标识
DOI:10.1007/s00163-020-00336-7
摘要

In simulation-based realization of complex systems, we are forced to address the issue of computational complexity. One critical issue that must be addressed is the approximation of reality using surrogate models to replace expensive simulation models of engineering problems. In this paper, we critically review over 200 papers. We find that a framework for selecting appropriate surrogate modeling methods for a given function with specific requirements has been lacking. Having such a framework for surrogate model users, specifically practitioners in industry, is very important because there is very limited information about the performance of different models before applying them on the problem. Our contribution in this paper is to address this gap by creating practical guidance based on a trade-off among three main drivers, namely, size (how much information is necessary to compute the surrogate model), accuracy (how accurate the surrogate model must be) and computational time (how much time is required for the surrogate modeling process). Using the proposed guidance a huge amount of time is saved by avoiding time-consuming comparisons before selecting the appropriate surrogate model. To make this contribution, we review the state-of-the-art surrogate modeling literature to answer the following three questions: (1) What are the main classes of the design of experiment (DOE) methods, surrogate modeling methods and model-fitting methods based on the requirements of size, computational time, and accuracy? (2) Which surrogate modeling method is suitable based on the critical characteristics of the requirements of size, computational time and accuracy? (3) Which DOE is suitable based on the critical characteristics of the requirements of size, computational time and accuracy? Based on these three characteristics, we find six different qualitative categories for the surrogate models through a critical evaluation of the literature. These categories provide a framework for selecting an efficient surrogate modeling process to assist those who wish to select more appropriate surrogate modeling techniques for a given function. It is also summarized in Table 4 and Figs. 2, 3. MARS, response surface models, and kriging are more appropriate for large problems, acquiring less computation time and high accuracy, respectively. Also, Latin Hypercube, fractional factorial designs and D-Optimal designs are appropriate experimental designs. Our contribution is to propose a qualitative evaluation and a mental model which is based on quantitative results and findings of authors in the published literature. The value of such a framework is in providing practical guide for researchers and practitioners in industry to choose the most appropriate surrogate model based on incomplete information about an engineering design problem. Another contribution is to use three drivers, namely, computational time, accuracy, and problem size instead of using a single measure that authors generally use in the published literature.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
给好评完成签到,获得积分10
1秒前
lina发布了新的文献求助50
3秒前
3秒前
范棒棒发布了新的文献求助10
4秒前
5秒前
追寻远山发布了新的文献求助10
5秒前
6秒前
kawayifenm完成签到,获得积分10
6秒前
瓷儿发布了新的文献求助10
6秒前
傢誠完成签到,获得积分10
8秒前
8秒前
张如杰发布了新的文献求助10
9秒前
10秒前
Jeff发布了新的文献求助10
11秒前
Niki完成签到,获得积分10
12秒前
那种发布了新的文献求助10
14秒前
14秒前
背后的新烟完成签到,获得积分10
15秒前
15秒前
15秒前
16秒前
今后应助嘿小白采纳,获得10
16秒前
大男完成签到,获得积分10
16秒前
17秒前
玩转非晶发布了新的文献求助10
19秒前
19秒前
Cassiel发布了新的文献求助30
20秒前
20秒前
21秒前
Millennial发布了新的文献求助10
21秒前
哈拉斯完成签到,获得积分10
21秒前
佳妹儿发布了新的文献求助10
22秒前
费雪卉完成签到,获得积分0
23秒前
Brian发布了新的文献求助10
25秒前
26秒前
未雨绸缪完成签到,获得积分10
26秒前
26秒前
petrichor应助RJFENG采纳,获得10
26秒前
29秒前
29秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2700
1.3μm GaAs基InAs量子点材料生长及器件应用 1000
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
Luis Lacasa - Sobre esto y aquello 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3526155
求助须知:如何正确求助?哪些是违规求助? 3106527
关于积分的说明 9280871
捐赠科研通 2804159
什么是DOI,文献DOI怎么找? 1539302
邀请新用户注册赠送积分活动 716522
科研通“疑难数据库(出版商)”最低求助积分说明 709495