DeepXDE: A Deep Learning Library for Solving Differential Equations

计算机科学 Python(编程语言) 偏微分方程 建设性的 人工神经网络 自动微分 反问题 理论计算机科学 人工智能 数学优化 数学 应用数学 算法 计算 数学分析 程序设计语言 过程(计算)
作者
Lu Lu,Xuhui Meng,Zhiping Mao,George Em Karniadakis
出处
期刊:Siam Review [Society for Industrial and Applied Mathematics]
卷期号:63 (1): 208-228 被引量:1103
标识
DOI:10.1137/19m1274067
摘要

Deep learning has achieved remarkable success in diverse applications; however, its use in solving partial differential equations (PDEs) has emerged only recently. Here, we present an overview of physics-informed neural networks (PINNs), which embed a PDE into the loss of the neural network using automatic differentiation. The PINN algorithm is simple, and it can be applied to different types of PDEs, including integro-differential equations, fractional PDEs, and stochastic PDEs. Moreover, from an implementation point of view, PINNs solve inverse problems as easily as forward problems. We propose a new residual-based adaptive refinement (RAR) method to improve the training efficiency of PINNs. For pedagogical reasons, we compare the PINN algorithm to a standard finite element method. We also present a Python library for PINNs, DeepXDE, which is designed to serve both as an educational tool to be used in the classroom as well as a research tool for solving problems in computational science and engineering. Specifically, DeepXDE can solve forward problems given initial and boundary conditions, as well as inverse problems given some extra measurements. DeepXDE supports complex-geometry domains based on the technique of constructive solid geometry and enables the user code to be compact, resembling closely the mathematical formulation. We introduce the usage of DeepXDE and its customizability, and we also demonstrate the capability of PINNs and the user-friendliness of DeepXDE for five different examples. More broadly, DeepXDE contributes to the more rapid development of the emerging scientific machine learning field.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
3秒前
Sunny完成签到,获得积分10
3秒前
高兴的羊完成签到,获得积分10
5秒前
serein发布了新的文献求助30
5秒前
6秒前
万能图书馆应助漂亮幻莲采纳,获得10
7秒前
8秒前
谢紫玲发布了新的文献求助10
8秒前
9秒前
华仔应助小大巫采纳,获得30
11秒前
sad完成签到,获得积分10
11秒前
充电宝应助ziwei采纳,获得10
11秒前
华仔应助甜甜寄凡采纳,获得10
11秒前
求助发布了新的文献求助10
11秒前
调研昵称发布了新的文献求助10
14秒前
14秒前
asd发布了新的文献求助10
15秒前
16秒前
16秒前
豆子完成签到,获得积分10
17秒前
漂亮幻莲完成签到,获得积分10
18秒前
18秒前
19秒前
19秒前
23xyke发布了新的文献求助10
20秒前
漂亮幻莲发布了新的文献求助10
20秒前
谢紫玲完成签到,获得积分10
21秒前
21秒前
咕咕完成签到,获得积分10
23秒前
毛儿豆儿完成签到,获得积分10
25秒前
张远幸发布了新的文献求助10
25秒前
甜甜寄凡发布了新的文献求助10
26秒前
26秒前
ziwei完成签到,获得积分10
26秒前
gaoww完成签到,获得积分20
26秒前
科目三应助饱满的山柳采纳,获得30
27秒前
斯文败类应助小耳朵采纳,获得10
29秒前
Annie发布了新的文献求助10
31秒前
ddn完成签到,获得积分10
32秒前
不驯完成签到 ,获得积分10
36秒前
高分求助中
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
Rechtsphilosophie 1000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
Le dégorgement réflexe des Acridiens 800
Defense against predation 800
Very-high-order BVD Schemes Using β-variable THINC Method 568
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3135044
求助须知:如何正确求助?哪些是违规求助? 2786005
关于积分的说明 7774726
捐赠科研通 2441825
什么是DOI,文献DOI怎么找? 1298217
科研通“疑难数据库(出版商)”最低求助积分说明 625088
版权声明 600825