Metabolic fingerprinting for discrimination of DNA-authenticated Atractylodes plants using 1H NMR spectroscopy

苍术 根茎 主成分分析 质子核磁共振 生物 化学 植物 立体化学 医学 人工智能 计算机科学 中医药 病理 替代医学
作者
Tatsuya Shirahata,Hiroshi Ishikawa,Teruhisa Kudo,Yumiko Takada,Azusa Hoshino,Yui Taga,Yusaku Minakuchi,Tomoko Hasegawa,Rina Horiguchi,Takehiro Hirayama,Tenji Konishi,Hiroaki Takemoto,Noriko Sato,Masako Aragane,Tetsuro Oikawa,Hiroshi Odaguchi,Toshihiko Hanawa,Eiichi Kodaira,Tatsuo Fukuda,Yoshinori Kobayashi
出处
期刊:Journal of Natural Medicines [Springer Nature]
卷期号:75 (3): 475-488 被引量:8
标识
DOI:10.1007/s11418-020-01471-0
摘要

Identifying different species of the genus Atractylodes which are commonly used in Chinese and Japanese traditional medicine, using chromatographic approaches can be difficult. 1H NMR metabolic profiling of DNA-authenticated, archived rhizomes of the genus Atractylodes was performed for genetic and chemical evaluation. The ITS region of the nuclear rDNA was sequenced for five species, A. japonica, A. macrocephala, A. lancea, A. chinensis, and A. koreana. Our samples had nucleotide sequences as previously reported, except that part of the A. lancea cultivated in Japan had a type 5, hybrid DNA sequence. Principal component analysis (PCA) using 1H NMR spectra of extracts with two solvent systems (CD3OD, CDCl3) was performed. When CDCl3 extracts were utilized, the chemometric analysis enabled the identification and classification of Atractylodes species according to their composition of major sesquiterpene compounds. The 1H NMR spectra using CD3OD contained confounding sugar peaks. PCA removal of these peaks gave the same result as that obtained using CDCl3 and allowed species distinction. Such chemometric methods with multivariate analysis of NMR spectra will be useful for the discrimination of plant species, without specifying the index components and quantitative analysis on multi-components.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Jason完成签到,获得积分10
刚刚
1秒前
思源应助sssssss采纳,获得10
1秒前
雪雪发布了新的文献求助10
1秒前
疯狂的山楂完成签到 ,获得积分10
2秒前
未雨完成签到,获得积分10
2秒前
Akim应助wf采纳,获得10
2秒前
sunsun10086完成签到 ,获得积分10
3秒前
琦琦完成签到 ,获得积分10
3秒前
3秒前
科目三应助xanderxue采纳,获得10
3秒前
3秒前
晶晶发布了新的文献求助10
3秒前
森森完成签到,获得积分10
4秒前
4秒前
Ava应助温暖的颜演采纳,获得10
4秒前
Ky_Mac应助Lee采纳,获得20
5秒前
ww发布了新的文献求助10
5秒前
5秒前
6秒前
抗氧剂完成签到,获得积分20
7秒前
直率的玉米完成签到 ,获得积分10
7秒前
英俊的铭应助ZMl采纳,获得10
7秒前
7秒前
爆米花应助wh雨采纳,获得10
7秒前
丘比特应助冷水鱼采纳,获得10
7秒前
LiZH完成签到,获得积分10
8秒前
9秒前
传奇3应助ivy采纳,获得10
9秒前
9秒前
Persepolis完成签到,获得积分10
9秒前
mm完成签到,获得积分10
10秒前
量子星尘发布了新的文献求助10
10秒前
小蘑菇应助sweettt3采纳,获得10
10秒前
12秒前
花粉过敏发布了新的文献求助10
12秒前
xianglinnnn完成签到,获得积分10
12秒前
陈2026完成签到,获得积分10
12秒前
xmj发布了新的文献求助10
12秒前
12秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Russian Foreign Policy: Change and Continuity 800
Real World Research, 5th Edition 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
Superabsorbent Polymers 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5710603
求助须知:如何正确求助?哪些是违规求助? 5199800
关于积分的说明 15261321
捐赠科研通 4863194
什么是DOI,文献DOI怎么找? 2610478
邀请新用户注册赠送积分活动 1560802
关于科研通互助平台的介绍 1518423