Synthesizing CT images from MR images with deep learning: model generalization for different datasets through transfer learning

计算机科学 人工智能 学习迁移 一般化 领域(数学分析) 概化理论 模式识别(心理学) 深度学习 机器学习 数学 统计 数学分析
作者
Wen Li,Samaneh Kazemifar,Ti Bai,Dan Nguyen,Yaochung Weng,Yafen Li,Jun Xia,Jing Xiong,Yaoqin Xie,Amir Owrangi,Steve Jiang
出处
期刊:Biomedical Physics & Engineering Express [IOP Publishing]
卷期号:7 (2): 025020-025020 被引量:19
标识
DOI:10.1088/2057-1976/abe3a7
摘要

Background and purpose.Replacing CT imaging with MR imaging for MR-only radiotherapy has sparked the interest of many scientists and is being increasingly adopted in radiation oncology. Although many studies have focused on generating CT images from MR images, only models on data with the same dataset were tested. Therefore, how well the trained model will work for data from different hospitals and MR protocols is still unknown. In this study, we addressed the model generalization problem for the MR-to-CT conversion task.Materials and methods.Brain T2 MR and corresponding CT images were collected from SZSPH (source domain dataset), brain T1-FLAIR, T1-POST MR, and corresponding CT images were collected from The University of Texas Southwestern (UTSW) (target domain dataset). To investigate the model's generalizability ability, four potential solutions were proposed: source model, target model, combined model, and adapted model. All models were trained using the CycleGAN network. The source model was trained with a source domain dataset from scratch and tested with a target domain dataset. The target model was trained with a target domain dataset and tested with a target domain dataset. The combined model was trained with both source domain and target domain datasets, and tested with the target domain dataset. The adapted model used a transfer learning strategy to train a CycleGAN model with a source domain dataset and retrain the pre-trained model with a target domain dataset. MAE, RMSE, PSNR, and SSIM were used to quantitatively evaluate model performance on a target domain dataset.Results.The adapted model achieved best quantitative results of 74.56 ± 8.61, 193.18 ± 17.98, 28.30 ± 0.83, and 0.84 ± 0.01 for MAE, RMSE, PSNR, and SSIM using the T1-FLAIR dataset and 74.89 ± 15.64, 195.73 ± 31.29, 27.72 ± 1.43, and 0.83 ± 0.04 for MAE, RMSE, PSNR, and SSIM using the T1-POST dataset. The source model had the poorest performance.Conclusions.This work indicates high generalization ability to generate synthetic CT images from small training datasets of MR images using pre-trained CycleGAN. The quantitative results of the test data, including different scanning protocols and different acquisition centers, indicated the proof of this concept.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
wwwzy1996发布了新的文献求助10
刚刚
hbc8379发布了新的文献求助10
刚刚
聪明元蝶完成签到,获得积分10
2秒前
kk发布了新的文献求助10
3秒前
健壮傲芙发布了新的文献求助10
3秒前
4秒前
lwl666完成签到,获得积分10
4秒前
yao完成签到,获得积分10
6秒前
烂漫夜梦完成签到,获得积分10
7秒前
FashionBoy应助叶子采纳,获得10
8秒前
wanci应助小正采纳,获得10
9秒前
Tireastani应助赵云采纳,获得10
10秒前
12秒前
粗心的青旋完成签到,获得积分10
13秒前
15秒前
潼熙甄完成签到 ,获得积分10
16秒前
16秒前
Echo完成签到,获得积分10
16秒前
16秒前
17秒前
量子星尘发布了新的文献求助10
18秒前
叶子完成签到,获得积分10
18秒前
大模型应助呆萌蜻蜓采纳,获得10
19秒前
19秒前
yznfly应助山城小丸采纳,获得200
19秒前
Akim应助曾泳钧采纳,获得10
20秒前
20秒前
suliuyin发布了新的文献求助10
20秒前
20秒前
美好师完成签到,获得积分10
22秒前
元元完成签到 ,获得积分10
22秒前
23秒前
认真代曼发布了新的文献求助10
23秒前
开心发布了新的文献求助10
24秒前
wanci应助MMWang采纳,获得10
24秒前
25秒前
ZM发布了新的文献求助10
25秒前
26秒前
阿良发布了新的文献求助10
26秒前
坦率期待发布了新的文献求助10
26秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Agriculture and Food Systems Third Edition 2000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
人脑智能与人工智能 1000
King Tyrant 720
ACOG Practice Bulletin: Polycystic Ovary Syndrome 500
Silicon in Organic, Organometallic, and Polymer Chemistry 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5602687
求助须知:如何正确求助?哪些是违规求助? 4687724
关于积分的说明 14850920
捐赠科研通 4684930
什么是DOI,文献DOI怎么找? 2540020
邀请新用户注册赠送积分活动 1506783
关于科研通互助平台的介绍 1471445