Synthesizing CT images from MR images with deep learning: model generalization for different datasets through transfer learning

计算机科学 人工智能 学习迁移 一般化 领域(数学分析) 概化理论 模式识别(心理学) 深度学习 机器学习 数学 统计 数学分析
作者
Wen Li,Samaneh Kazemifar,Ti Bai,Dan Nguyen,Yaochung Weng,Yafen Li,Jun Xia,Jing Xiong,Yaoqin Xie,Amir Owrangi,Steve Jiang
出处
期刊:Biomedical Physics & Engineering Express [IOP Publishing]
卷期号:7 (2): 025020-025020 被引量:19
标识
DOI:10.1088/2057-1976/abe3a7
摘要

Background and purpose.Replacing CT imaging with MR imaging for MR-only radiotherapy has sparked the interest of many scientists and is being increasingly adopted in radiation oncology. Although many studies have focused on generating CT images from MR images, only models on data with the same dataset were tested. Therefore, how well the trained model will work for data from different hospitals and MR protocols is still unknown. In this study, we addressed the model generalization problem for the MR-to-CT conversion task.Materials and methods.Brain T2 MR and corresponding CT images were collected from SZSPH (source domain dataset), brain T1-FLAIR, T1-POST MR, and corresponding CT images were collected from The University of Texas Southwestern (UTSW) (target domain dataset). To investigate the model's generalizability ability, four potential solutions were proposed: source model, target model, combined model, and adapted model. All models were trained using the CycleGAN network. The source model was trained with a source domain dataset from scratch and tested with a target domain dataset. The target model was trained with a target domain dataset and tested with a target domain dataset. The combined model was trained with both source domain and target domain datasets, and tested with the target domain dataset. The adapted model used a transfer learning strategy to train a CycleGAN model with a source domain dataset and retrain the pre-trained model with a target domain dataset. MAE, RMSE, PSNR, and SSIM were used to quantitatively evaluate model performance on a target domain dataset.Results.The adapted model achieved best quantitative results of 74.56 ± 8.61, 193.18 ± 17.98, 28.30 ± 0.83, and 0.84 ± 0.01 for MAE, RMSE, PSNR, and SSIM using the T1-FLAIR dataset and 74.89 ± 15.64, 195.73 ± 31.29, 27.72 ± 1.43, and 0.83 ± 0.04 for MAE, RMSE, PSNR, and SSIM using the T1-POST dataset. The source model had the poorest performance.Conclusions.This work indicates high generalization ability to generate synthetic CT images from small training datasets of MR images using pre-trained CycleGAN. The quantitative results of the test data, including different scanning protocols and different acquisition centers, indicated the proof of this concept.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Limerencia完成签到,获得积分10
1秒前
LMBE1K完成签到 ,获得积分10
2秒前
4秒前
jasmineee发布了新的文献求助10
4秒前
大个应助大气摩托采纳,获得10
4秒前
搞怪人雄发布了新的文献求助10
4秒前
椰子发布了新的文献求助10
4秒前
李怼怼发布了新的文献求助10
4秒前
平淡的鸿煊完成签到 ,获得积分10
4秒前
5秒前
5秒前
冷傲路灯发布了新的文献求助30
5秒前
量子星尘发布了新的文献求助10
5秒前
5秒前
6秒前
SciGPT应助嘻嘻采纳,获得10
6秒前
6秒前
6秒前
7秒前
7秒前
7秒前
安静的冷亦完成签到,获得积分10
8秒前
思源应助不安万声采纳,获得10
8秒前
9秒前
无风发布了新的文献求助10
9秒前
asufga发布了新的文献求助10
9秒前
9秒前
10秒前
12秒前
房山芙完成签到,获得积分10
12秒前
胡不喇关注了科研通微信公众号
12秒前
12秒前
orixero应助谢大喵采纳,获得10
13秒前
高敏完成签到 ,获得积分10
14秒前
Lmy发布了新的文献求助10
14秒前
天天快乐应助愉快长颈鹿采纳,获得10
15秒前
crazysnowking完成签到,获得积分10
17秒前
邓佳鑫Alan应助ller采纳,获得10
17秒前
18秒前
18秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
化妆品原料学 1000
《药学类医疗服务价格项目立项指南(征求意见稿)》 1000
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
nephSAP® Nephrology Self-Assessment Program - Hypertension The American Society of Nephrology 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5633215
求助须知:如何正确求助?哪些是违规求助? 4728654
关于积分的说明 14985295
捐赠科研通 4791156
什么是DOI,文献DOI怎么找? 2558773
邀请新用户注册赠送积分活动 1519196
关于科研通互助平台的介绍 1479516