Synthesizing CT images from MR images with deep learning: model generalization for different datasets through transfer learning

计算机科学 人工智能 学习迁移 一般化 领域(数学分析) 概化理论 模式识别(心理学) 深度学习 机器学习 数学 统计 数学分析
作者
Wen Li,Samaneh Kazemifar,Ti Bai,Dan Nguyen,Yaochung Weng,Yafen Li,Jun Xia,Jing Xiong,Yaoqin Xie,Amir Owrangi,Steve Jiang
出处
期刊:Biomedical Physics & Engineering Express [IOP Publishing]
卷期号:7 (2): 025020-025020 被引量:18
标识
DOI:10.1088/2057-1976/abe3a7
摘要

Background and purpose.Replacing CT imaging with MR imaging for MR-only radiotherapy has sparked the interest of many scientists and is being increasingly adopted in radiation oncology. Although many studies have focused on generating CT images from MR images, only models on data with the same dataset were tested. Therefore, how well the trained model will work for data from different hospitals and MR protocols is still unknown. In this study, we addressed the model generalization problem for the MR-to-CT conversion task.Materials and methods.Brain T2 MR and corresponding CT images were collected from SZSPH (source domain dataset), brain T1-FLAIR, T1-POST MR, and corresponding CT images were collected from The University of Texas Southwestern (UTSW) (target domain dataset). To investigate the model's generalizability ability, four potential solutions were proposed: source model, target model, combined model, and adapted model. All models were trained using the CycleGAN network. The source model was trained with a source domain dataset from scratch and tested with a target domain dataset. The target model was trained with a target domain dataset and tested with a target domain dataset. The combined model was trained with both source domain and target domain datasets, and tested with the target domain dataset. The adapted model used a transfer learning strategy to train a CycleGAN model with a source domain dataset and retrain the pre-trained model with a target domain dataset. MAE, RMSE, PSNR, and SSIM were used to quantitatively evaluate model performance on a target domain dataset.Results.The adapted model achieved best quantitative results of 74.56 ± 8.61, 193.18 ± 17.98, 28.30 ± 0.83, and 0.84 ± 0.01 for MAE, RMSE, PSNR, and SSIM using the T1-FLAIR dataset and 74.89 ± 15.64, 195.73 ± 31.29, 27.72 ± 1.43, and 0.83 ± 0.04 for MAE, RMSE, PSNR, and SSIM using the T1-POST dataset. The source model had the poorest performance.Conclusions.This work indicates high generalization ability to generate synthetic CT images from small training datasets of MR images using pre-trained CycleGAN. The quantitative results of the test data, including different scanning protocols and different acquisition centers, indicated the proof of this concept.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
Liu1YT完成签到 ,获得积分20
1秒前
煮饭吃Zz发布了新的文献求助10
2秒前
小丸子发布了新的文献求助10
4秒前
yml完成签到 ,获得积分10
6秒前
NexusExplorer应助一人摩羯采纳,获得10
7秒前
Jiang完成签到,获得积分10
10秒前
专注的飞瑶完成签到 ,获得积分10
11秒前
11秒前
凡人完成签到,获得积分10
12秒前
贤惠的老黑完成签到 ,获得积分10
13秒前
宗语雪完成签到,获得积分10
14秒前
14秒前
wanci应助chen采纳,获得10
16秒前
17秒前
iceblue发布了新的文献求助10
17秒前
18秒前
yml完成签到 ,获得积分10
18秒前
一人摩羯完成签到,获得积分10
19秒前
科研通AI2S应助跳跃采纳,获得10
20秒前
Marita发布了新的文献求助30
21秒前
21秒前
sssgx发布了新的文献求助10
23秒前
hihi完成签到,获得积分10
24秒前
25秒前
25秒前
27秒前
xiaoyuan完成签到,获得积分20
29秒前
iceblue完成签到,获得积分10
30秒前
small发布了新的文献求助10
30秒前
嘉子发布了新的文献求助10
31秒前
hh完成签到 ,获得积分10
35秒前
36秒前
37秒前
无限无心完成签到,获得积分10
39秒前
hezwy发布了新的文献求助10
39秒前
39秒前
顾矜应助丘丘小飞船采纳,获得10
40秒前
40秒前
41秒前
高分求助中
Evolution 10000
ISSN 2159-8274 EISSN 2159-8290 1000
Becoming: An Introduction to Jung's Concept of Individuation 600
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 500
The Kinetic Nitration and Basicity of 1,2,4-Triazol-5-ones 440
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3159748
求助须知:如何正确求助?哪些是违规求助? 2810660
关于积分的说明 7889023
捐赠科研通 2469717
什么是DOI,文献DOI怎么找? 1315035
科研通“疑难数据库(出版商)”最低求助积分说明 630738
版权声明 602012