亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Synthesizing CT images from MR images with deep learning: model generalization for different datasets through transfer learning

计算机科学 人工智能 学习迁移 一般化 领域(数学分析) 概化理论 模式识别(心理学) 深度学习 机器学习 数学 统计 数学分析
作者
Wen Li,Samaneh Kazemifar,Ti Bai,Dan Nguyen,Yaochung Weng,Yafen Li,Jun Xia,Jing Xiong,Yaoqin Xie,Amir Owrangi,Steve Jiang
出处
期刊:Biomedical Physics & Engineering Express [IOP Publishing]
卷期号:7 (2): 025020-025020 被引量:19
标识
DOI:10.1088/2057-1976/abe3a7
摘要

Background and purpose.Replacing CT imaging with MR imaging for MR-only radiotherapy has sparked the interest of many scientists and is being increasingly adopted in radiation oncology. Although many studies have focused on generating CT images from MR images, only models on data with the same dataset were tested. Therefore, how well the trained model will work for data from different hospitals and MR protocols is still unknown. In this study, we addressed the model generalization problem for the MR-to-CT conversion task.Materials and methods.Brain T2 MR and corresponding CT images were collected from SZSPH (source domain dataset), brain T1-FLAIR, T1-POST MR, and corresponding CT images were collected from The University of Texas Southwestern (UTSW) (target domain dataset). To investigate the model's generalizability ability, four potential solutions were proposed: source model, target model, combined model, and adapted model. All models were trained using the CycleGAN network. The source model was trained with a source domain dataset from scratch and tested with a target domain dataset. The target model was trained with a target domain dataset and tested with a target domain dataset. The combined model was trained with both source domain and target domain datasets, and tested with the target domain dataset. The adapted model used a transfer learning strategy to train a CycleGAN model with a source domain dataset and retrain the pre-trained model with a target domain dataset. MAE, RMSE, PSNR, and SSIM were used to quantitatively evaluate model performance on a target domain dataset.Results.The adapted model achieved best quantitative results of 74.56 ± 8.61, 193.18 ± 17.98, 28.30 ± 0.83, and 0.84 ± 0.01 for MAE, RMSE, PSNR, and SSIM using the T1-FLAIR dataset and 74.89 ± 15.64, 195.73 ± 31.29, 27.72 ± 1.43, and 0.83 ± 0.04 for MAE, RMSE, PSNR, and SSIM using the T1-POST dataset. The source model had the poorest performance.Conclusions.This work indicates high generalization ability to generate synthetic CT images from small training datasets of MR images using pre-trained CycleGAN. The quantitative results of the test data, including different scanning protocols and different acquisition centers, indicated the proof of this concept.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
建议保存本图,每天支付宝扫一扫(相册选取)领红包
实时播报
tamo完成签到,获得积分10
9秒前
11秒前
12秒前
14秒前
潮鸣完成签到 ,获得积分10
15秒前
NiceSunnyDay完成签到 ,获得积分10
17秒前
哈哈完成签到,获得积分10
18秒前
wzccc发布了新的文献求助10
19秒前
21秒前
3sigma发布了新的文献求助10
26秒前
27秒前
28秒前
香樟沐雪发布了新的文献求助10
33秒前
脑洞疼应助3sigma采纳,获得10
35秒前
昏睡的芒果完成签到,获得积分10
36秒前
潇洒莞完成签到 ,获得积分10
36秒前
37秒前
传奇3应助疯狂的凝云采纳,获得10
40秒前
深情安青应助香樟沐雪采纳,获得10
44秒前
大模型应助saywhy采纳,获得10
46秒前
3sigma完成签到,获得积分10
47秒前
浮游应助科研通管家采纳,获得10
48秒前
吴彦祖应助科研通管家采纳,获得10
48秒前
浮游应助科研通管家采纳,获得10
48秒前
浮游应助科研通管家采纳,获得10
48秒前
浮游应助科研通管家采纳,获得10
48秒前
充电宝应助科研通管家采纳,获得10
48秒前
48秒前
科研通AI6应助科研通管家采纳,获得10
48秒前
吴彦祖应助科研通管家采纳,获得10
48秒前
58秒前
jjyy发布了新的文献求助10
1分钟前
1分钟前
1分钟前
1分钟前
一个冷漠无情的人完成签到,获得积分10
1分钟前
唠叨的妙梦完成签到,获得积分10
1分钟前
hx完成签到 ,获得积分10
1分钟前
leec完成签到,获得积分10
1分钟前
1分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Mentoring for Wellbeing in Schools 1200
List of 1,091 Public Pension Profiles by Region 1061
Binary Alloy Phase Diagrams, 2nd Edition 600
Atlas of Liver Pathology: A Pattern-Based Approach 500
A Technologist’s Guide to Performing Sleep Studies 500
EEG in Childhood Epilepsy: Initial Presentation & Long-Term Follow-Up 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5498185
求助须知:如何正确求助?哪些是违规求助? 4595509
关于积分的说明 14449204
捐赠科研通 4528187
什么是DOI,文献DOI怎么找? 2481411
邀请新用户注册赠送积分活动 1465554
关于科研通互助平台的介绍 1438297