Synthesizing CT images from MR images with deep learning: model generalization for different datasets through transfer learning

计算机科学 人工智能 学习迁移 一般化 领域(数学分析) 概化理论 模式识别(心理学) 深度学习 机器学习 数学 统计 数学分析
作者
Wen Li,Samaneh Kazemifar,Ti Bai,Dan Nguyen,Yaochung Weng,Yafen Li,Jun Xia,Jing Xiong,Yaoqin Xie,Amir Owrangi,Steve Jiang
出处
期刊:Biomedical Physics & Engineering Express [IOP Publishing]
卷期号:7 (2): 025020-025020 被引量:19
标识
DOI:10.1088/2057-1976/abe3a7
摘要

Background and purpose.Replacing CT imaging with MR imaging for MR-only radiotherapy has sparked the interest of many scientists and is being increasingly adopted in radiation oncology. Although many studies have focused on generating CT images from MR images, only models on data with the same dataset were tested. Therefore, how well the trained model will work for data from different hospitals and MR protocols is still unknown. In this study, we addressed the model generalization problem for the MR-to-CT conversion task.Materials and methods.Brain T2 MR and corresponding CT images were collected from SZSPH (source domain dataset), brain T1-FLAIR, T1-POST MR, and corresponding CT images were collected from The University of Texas Southwestern (UTSW) (target domain dataset). To investigate the model's generalizability ability, four potential solutions were proposed: source model, target model, combined model, and adapted model. All models were trained using the CycleGAN network. The source model was trained with a source domain dataset from scratch and tested with a target domain dataset. The target model was trained with a target domain dataset and tested with a target domain dataset. The combined model was trained with both source domain and target domain datasets, and tested with the target domain dataset. The adapted model used a transfer learning strategy to train a CycleGAN model with a source domain dataset and retrain the pre-trained model with a target domain dataset. MAE, RMSE, PSNR, and SSIM were used to quantitatively evaluate model performance on a target domain dataset.Results.The adapted model achieved best quantitative results of 74.56 ± 8.61, 193.18 ± 17.98, 28.30 ± 0.83, and 0.84 ± 0.01 for MAE, RMSE, PSNR, and SSIM using the T1-FLAIR dataset and 74.89 ± 15.64, 195.73 ± 31.29, 27.72 ± 1.43, and 0.83 ± 0.04 for MAE, RMSE, PSNR, and SSIM using the T1-POST dataset. The source model had the poorest performance.Conclusions.This work indicates high generalization ability to generate synthetic CT images from small training datasets of MR images using pre-trained CycleGAN. The quantitative results of the test data, including different scanning protocols and different acquisition centers, indicated the proof of this concept.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
明亮的亦绿完成签到 ,获得积分10
1秒前
1秒前
2秒前
万能图书馆应助江夏清采纳,获得10
2秒前
孤独卿完成签到,获得积分10
3秒前
无奈又晴发布了新的文献求助10
3秒前
传奇3应助顶顶顶顶采纳,获得10
3秒前
曈梦发布了新的文献求助10
3秒前
迷失的悠悠完成签到,获得积分10
3秒前
4秒前
5秒前
5秒前
LI完成签到,获得积分20
6秒前
7秒前
7秒前
7秒前
乐乐应助科研通管家采纳,获得10
8秒前
bkagyin应助科研通管家采纳,获得10
8秒前
安逸发布了新的文献求助10
8秒前
Jasper应助科研通管家采纳,获得10
8秒前
上官若男应助科研通管家采纳,获得10
8秒前
十二完成签到 ,获得积分10
8秒前
深情安青应助科研通管家采纳,获得10
8秒前
爆米花应助科研通管家采纳,获得10
8秒前
ilihe应助科研通管家采纳,获得10
8秒前
科研通AI6应助科研通管家采纳,获得10
8秒前
8秒前
深情安青应助科研通管家采纳,获得10
8秒前
超级幼旋应助科研通管家采纳,获得10
8秒前
烟花应助科研通管家采纳,获得10
8秒前
科研通AI6应助科研通管家采纳,获得30
8秒前
丘比特应助科研通管家采纳,获得10
8秒前
LI发布了新的文献求助10
8秒前
小猴子应助科研通管家采纳,获得10
8秒前
ilihe应助科研通管家采纳,获得10
8秒前
隐形曼青应助科研通管家采纳,获得10
9秒前
权权xulu应助科研通管家采纳,获得10
9秒前
在水一方应助科研通管家采纳,获得10
9秒前
无极微光应助科研通管家采纳,获得30
9秒前
Ava应助科研通管家采纳,获得20
9秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Mechanics of Solids with Applications to Thin Bodies 5000
Encyclopedia of Agriculture and Food Systems Third Edition 2000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
人脑智能与人工智能 1000
King Tyrant 720
Silicon in Organic, Organometallic, and Polymer Chemistry 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5601396
求助须知:如何正确求助?哪些是违规求助? 4686922
关于积分的说明 14846724
捐赠科研通 4680979
什么是DOI,文献DOI怎么找? 2539359
邀请新用户注册赠送积分活动 1506257
关于科研通互助平台的介绍 1471293