Passivation of defects in perovskite solar cell: From a chemistry point of view

钙钛矿(结构) 钝化 材料科学 太阳能电池 光伏 带隙 结晶 纳米技术 光伏系统 化学工程 光电子学 工程类 生态学 生物 图层(电子)
作者
Yameng Li,Haixia Wu,Wenjing Qi,Xin Zhou,Jiale Li,Jian Cheng,Ying Zhao,Yuelong Li,Xiaodan Zhang
出处
期刊:Nano Energy [Elsevier]
卷期号:77: 105237-105237 被引量:119
标识
DOI:10.1016/j.nanoen.2020.105237
摘要

A certified 25.2% efficiency of metal halide perovskite solar cells (PSCs) has been rapidly reached in 2019 within just a decade which is unprecedented in the field of photovoltaics. Excellent optoelectronic properties such as high absorption coefficient, tunable direct bandgap, long diffusion length, and high carrier mobility promise a further improvement of device performance. However, as a result of the solution precursor compositions and rapid processing conditions, tremendous amounts of defects with various types are formed within perovskite absorbers or on the surfaces, which serve as the nonradiative recombination centers to impede the rapid development of PSCs. Therefore, learned from the field of mature Silicon-based solar cell, passivation of such defects in the bulk and/or at the surface, as well as influence the interface tuning of structure and energetics has to be urgently conducted by choosing appropriate chemical molecules, which have the potential of tailoring crystallization and growth of perovskite absorbers. Here, recent advances in passivation engineering for perovskite film formation or interface optimization are summarized and discussed according to the following typical categories: Lewis acid (e.g., metal cations, organic cations, zwitterion, fullerene derivatives), Lewis base based on the donor type (e.g., anions, S-donor, N-donor, O-donor, graphene derivatives, and n-π conjugated materials), passivators with multifunctional groups. Finally, a perspective is predicted on future research trends concerning passivation engineering in advancing the development of PSCs, especially in efficiency, stability, and commercialization.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
1秒前
脑洞疼应助朴实凡柔采纳,获得10
2秒前
无语jian完成签到 ,获得积分10
3秒前
六子发布了新的文献求助10
4秒前
4秒前
memory发布了新的文献求助20
5秒前
Hello应助ddffgz采纳,获得10
5秒前
乘数完成签到,获得积分10
5秒前
jiuyang完成签到,获得积分10
6秒前
6秒前
喵了个咪发布了新的文献求助10
6秒前
7秒前
求助NE完成签到 ,获得积分10
7秒前
why发布了新的文献求助10
8秒前
Jayya完成签到 ,获得积分10
8秒前
Murphy完成签到,获得积分10
8秒前
qmx完成签到,获得积分10
8秒前
8秒前
星辰大海应助mm采纳,获得10
9秒前
朝阳发布了新的文献求助10
9秒前
Zoe完成签到,获得积分10
9秒前
9秒前
9秒前
徐矿发布了新的文献求助10
11秒前
萧瑟完成签到 ,获得积分10
11秒前
一朵小发发完成签到,获得积分10
11秒前
11秒前
mhy发布了新的文献求助10
13秒前
13秒前
Hello应助快乐的晓刚采纳,获得30
14秒前
香蕉觅云应助莉亚采纳,获得30
14秒前
14秒前
于广喜发布了新的文献求助10
15秒前
m彬m彬完成签到 ,获得积分10
15秒前
林齐发布了新的文献求助10
15秒前
小小威廉完成签到,获得积分10
16秒前
mm完成签到,获得积分10
16秒前
dacongming发布了新的文献求助10
16秒前
16秒前
高分求助中
Evolution 10000
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
A technique for the measurement of attitudes 500
A new approach of magnetic circular dichroism to the electronic state analysis of intact photosynthetic pigments 500
Diagnostic immunohistochemistry : theranostic and genomic applications 6th Edition 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3148683
求助须知:如何正确求助?哪些是违规求助? 2799722
关于积分的说明 7836622
捐赠科研通 2457168
什么是DOI,文献DOI怎么找? 1307779
科研通“疑难数据库(出版商)”最低求助积分说明 628265
版权声明 601663