Location-Aware Deep Collaborative Filtering for Service Recommendation

协同过滤 计算机科学 服务(商务) 钥匙(锁) Web服务 感知器 深度学习 利用 人工智能 推荐系统 机器学习 嵌入 相似性(几何) 数据挖掘 万维网 人工神经网络 计算机安全 经济 图像(数学) 经济
作者
Yiwen Zhang,Chunhui Yin,Qilin Wu,Qiang He,Haibin Zhu
出处
期刊:IEEE transactions on systems, man, and cybernetics [Institute of Electrical and Electronics Engineers]
卷期号:51 (6): 3796-3807 被引量:121
标识
DOI:10.1109/tsmc.2019.2931723
摘要

With the widespread application of service-oriented architecture (SOA), a flood of similarly functioning services have been deployed online. How to recommend services to users to meet their individual needs becomes the key issue in service recommendation. In recent years, methods based on collaborative filtering (CF) have been widely proposed for service recommendation. However, traditional CF typically exploits only low-dimensional and linear interactions between users and services and is challenged by the problem of data sparsity in the real world. To address these issues, inspired by deep learning, this article proposes a new deep CF model for service recommendation, named location-aware deep CF (LDCF). This model offers the following innovations: 1) the location features are mapped into high-dimensional dense embedding vectors; 2) the multilayer-perceptron (MLP) captures the high-dimensional and nonlinear characteristics; and 3) the similarity adaptive corrector (AC) is first embedded in the output layer to correct the predictive quality of service. Equipped with these, LDCF can not only learn the high-dimensional and nonlinear interactions between users and services but also significantly alleviate the data sparsity problem. Through substantial experiments conducted on a real-world Web service dataset, results indicate that LDCF's recommendation performance obviously outperforms nine state-of-the-art service recommendation methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
栗子发布了新的文献求助10
1秒前
无辜梨愁完成签到 ,获得积分10
1秒前
22发布了新的文献求助10
3秒前
D1完成签到,获得积分10
5秒前
肥陈完成签到,获得积分10
7秒前
wu8577举报沉默是金求助涉嫌违规
8秒前
领导范儿应助翻羽采纳,获得10
9秒前
9秒前
10秒前
11秒前
椰青冰萃发布了新的文献求助30
13秒前
对对碰关注了科研通微信公众号
15秒前
16秒前
情怀应助栗子采纳,获得30
17秒前
研友_ndka5L发布了新的文献求助10
17秒前
17秒前
曦之南。发布了新的文献求助10
20秒前
20秒前
香蕉觅云应助MeiyanZou采纳,获得10
21秒前
猪哥发布了新的文献求助20
22秒前
腼腆的恶天完成签到,获得积分10
22秒前
23秒前
23秒前
YC完成签到,获得积分20
23秒前
魏冉发布了新的文献求助10
24秒前
24秒前
Owen应助qhjqljqd采纳,获得10
26秒前
26秒前
研友_ndka5L完成签到,获得积分20
26秒前
27秒前
28秒前
29秒前
29秒前
椰青冰萃完成签到,获得积分10
30秒前
30秒前
飞翔的蒲公英完成签到,获得积分10
31秒前
熊i发布了新的文献求助10
31秒前
量子星尘发布了新的文献求助10
31秒前
31秒前
33秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3956715
求助须知:如何正确求助?哪些是违规求助? 3502823
关于积分的说明 11110134
捐赠科研通 3233745
什么是DOI,文献DOI怎么找? 1787489
邀请新用户注册赠送积分活动 870685
科研通“疑难数据库(出版商)”最低求助积分说明 802152