End-to-End Navigation Strategy With Deep Reinforcement Learning for Mobile Robots

强化学习 移动机器人 计算机科学 好奇心 人工智能 机器人 规划师 国家(计算机科学) 人机交互 计算机视觉 算法 心理学 社会心理学
作者
Haobin Shi,Lin Shi,Meng Xu,Kao‐Shing Hwang
出处
期刊:IEEE Transactions on Industrial Informatics [Institute of Electrical and Electronics Engineers]
卷期号:16 (4): 2393-2402 被引量:112
标识
DOI:10.1109/tii.2019.2936167
摘要

In this article, we develop a navigation strategy based on deep reinforcement learning (DRL) for mobile robots. Because of the large difference between simulation and reality, most of the trained DRL models cannot be directly migrated into real robots. Moreover, how to explore in a sparsely rewarded environment is also a long-standing problem of DRL. This article proposes an end-to-end navigation planner that translates sparse laser ranging results into movement actions. Using this highly abstract data as input, agents trained by simulation can be extended to the real scene for practical application. For map-less navigation across obstacles and traps, it is difficult to reach the target via random exploration. Curiosity is used to encourage agents to explore the state of an environment that has not been visited and as an additional reward for exploring behavior. The agent relies on the self-supervised model to predict the next state, based on the current state and the executed action. The prediction error is used as a measure of curiosity. The experimental results demonstrate that without any manual design features and previous demonstrations, the proposed method accomplishes map-less navigation in complex environments. Through a reward signal that is enhanced by intrinsic motivation, the agent explores more efficiently, and the learned strategy is more reliable.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
3秒前
xiao发布了新的文献求助20
3秒前
勤恳的雅青完成签到,获得积分10
5秒前
8秒前
俭朴千琴完成签到,获得积分20
10秒前
张青争完成签到,获得积分10
11秒前
吃你家大米啦完成签到,获得积分20
11秒前
13秒前
14秒前
14秒前
111发布了新的文献求助10
14秒前
Eisbecher发布了新的文献求助10
16秒前
简单点完成签到 ,获得积分10
17秒前
卓儿发布了新的文献求助10
17秒前
18秒前
茶柠完成签到 ,获得积分10
18秒前
大胆绮应助摸鱼划水采纳,获得20
18秒前
dyc238100完成签到,获得积分10
19秒前
20秒前
W_G完成签到,获得积分10
21秒前
21秒前
Zsir完成签到,获得积分10
22秒前
hou发布了新的文献求助10
24秒前
英姑应助小高采纳,获得50
26秒前
111完成签到,获得积分10
27秒前
27秒前
Jasper应助Lenacici采纳,获得10
28秒前
晗晗有酒窝完成签到,获得积分10
29秒前
今后应助huang采纳,获得10
31秒前
34秒前
卓儿完成签到,获得积分10
34秒前
jyy关闭了jyy文献求助
37秒前
摸鱼划水完成签到,获得积分10
37秒前
CodeCraft应助科研通管家采纳,获得10
38秒前
1111应助科研通管家采纳,获得10
38秒前
田様应助科研通管家采纳,获得30
38秒前
852应助科研通管家采纳,获得10
38秒前
也是难得取个名完成签到 ,获得积分10
38秒前
Hello应助科研通管家采纳,获得10
38秒前
ding应助科研通管家采纳,获得10
39秒前
高分求助中
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
Social Research Methods (4th Edition) by Maggie Walter (2019) 1030
A new approach to the extrapolation of accelerated life test data 1000
Indomethacinのヒトにおける経皮吸収 400
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 370
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3993430
求助须知:如何正确求助?哪些是违规求助? 3534082
关于积分的说明 11264604
捐赠科研通 3273901
什么是DOI,文献DOI怎么找? 1806170
邀请新用户注册赠送积分活动 883026
科研通“疑难数据库(出版商)”最低求助积分说明 809662