End-to-End Navigation Strategy With Deep Reinforcement Learning for Mobile Robots

强化学习 移动机器人 计算机科学 好奇心 人工智能 机器人 规划师 国家(计算机科学) 人机交互 计算机视觉 算法 心理学 社会心理学
作者
Haobin Shi,Lin Shi,Meng Xu,Kao‐Shing Hwang
出处
期刊:IEEE Transactions on Industrial Informatics [Institute of Electrical and Electronics Engineers]
卷期号:16 (4): 2393-2402 被引量:112
标识
DOI:10.1109/tii.2019.2936167
摘要

In this article, we develop a navigation strategy based on deep reinforcement learning (DRL) for mobile robots. Because of the large difference between simulation and reality, most of the trained DRL models cannot be directly migrated into real robots. Moreover, how to explore in a sparsely rewarded environment is also a long-standing problem of DRL. This article proposes an end-to-end navigation planner that translates sparse laser ranging results into movement actions. Using this highly abstract data as input, agents trained by simulation can be extended to the real scene for practical application. For map-less navigation across obstacles and traps, it is difficult to reach the target via random exploration. Curiosity is used to encourage agents to explore the state of an environment that has not been visited and as an additional reward for exploring behavior. The agent relies on the self-supervised model to predict the next state, based on the current state and the executed action. The prediction error is used as a measure of curiosity. The experimental results demonstrate that without any manual design features and previous demonstrations, the proposed method accomplishes map-less navigation in complex environments. Through a reward signal that is enhanced by intrinsic motivation, the agent explores more efficiently, and the learned strategy is more reliable.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
淡定雁开发布了新的文献求助10
刚刚
Alice完成签到 ,获得积分10
刚刚
1771408007发布了新的文献求助10
刚刚
刚刚
李爱国应助小路采纳,获得10
1秒前
LeeY.完成签到,获得积分10
9秒前
隐形曼青应助1771408007采纳,获得10
11秒前
1111完成签到 ,获得积分10
12秒前
HYH完成签到 ,获得积分10
12秒前
14秒前
17秒前
小吴发布了新的文献求助10
19秒前
慕青应助小郑好好搞科研采纳,获得10
20秒前
虚拟的眼神完成签到,获得积分10
21秒前
小路发布了新的文献求助10
21秒前
22秒前
二二完成签到 ,获得积分10
23秒前
再现发布了新的文献求助30
23秒前
CodeCraft应助大成子采纳,获得10
25秒前
lezbj99发布了新的文献求助10
27秒前
隐形曼青应助高贵姝采纳,获得10
27秒前
32秒前
Jasper应助眼睛大善斓采纳,获得10
33秒前
今后应助飘逸星影采纳,获得10
35秒前
小吴完成签到,获得积分10
35秒前
35秒前
单薄不悔完成签到,获得积分20
36秒前
Hello应助等待的音响采纳,获得10
37秒前
37秒前
超帅的蹇发布了新的文献求助50
38秒前
bukeshuo完成签到,获得积分10
38秒前
慧慧发布了新的文献求助10
41秒前
zhou完成签到,获得积分10
42秒前
飞飛飝完成签到,获得积分10
44秒前
Ghost完成签到,获得积分10
44秒前
邓佳鑫Alan应助单薄不悔采纳,获得10
44秒前
caohuijun发布了新的文献求助10
47秒前
nan完成签到,获得积分10
47秒前
48秒前
烟花应助bukeshuo采纳,获得10
48秒前
高分求助中
Earth System Geophysics 1000
Co-opetition under Endogenous Bargaining Power 666
Medicina di laboratorio. Logica e patologia clinica 600
Handbook of Marine Craft Hydrodynamics and Motion Control, 2nd Edition 500
Sarcolestes leedsi Lydekker, an ankylosaurian dinosaur from the Middle Jurassic of England 500
《关于整治突出dupin问题的实施意见》(厅字〔2019〕52号) 500
Language injustice and social equity in EMI policies in China 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3212442
求助须知:如何正确求助?哪些是违规求助? 2861244
关于积分的说明 8127961
捐赠科研通 2527199
什么是DOI,文献DOI怎么找? 1360859
科研通“疑难数据库(出版商)”最低求助积分说明 643348
邀请新用户注册赠送积分活动 615683