胞外聚合物
挥发性悬浮物
化学
氧化还原
高氯酸盐
生物膜
微生物种群生物学
环境化学
无氧运动
活性污泥
无机化学
废水
细菌
环境工程
有机化学
地质学
生物
工程类
离子
古生物学
生理学
作者
Weilong Liu,Jing Lian,Jianbo Guo,Yihang Guo,Lin Yue,Yanyan Niu,Lili Duan
标识
DOI:10.1016/j.jhazmat.2020.122898
摘要
An iron-humic acid (Fe-HA) complex was used as a redox mediator in perchlorate (ClO4−) bioreduction. Bioreduction performance, extracellular polymeric substances (EPS), and microbial community structure were comprehensively explored using different types of anaerobic granular sludge (AnGS) immobilised without the Fe-HA complex (AnGSCON) and with the Fe-HA complex (AnGSFH). The ClO4− was completely removed by AnGSCON by day 20, while the ClO4− was completely removed by AnGSFH by day 6. The AnGS immobilised with the Fe-HA complex significantly increased the ClO4− bioreduction. The acceleration of ClO4− bioreduction was also explained by the mixed liquor volatile suspended solids (MLVSS), MLVSS/mixed liquor suspended solids (MLSS), EPS composition, and microbial community structure. Compared with AnGSCON, the MLVSS and MLVSS/MLSS of the AnGSFH increased 1.4- and 1.2-fold, respectively. Humic substances in the EPS were stimulated by the Fe-HA complex. The microbial community structure analysis indicated that perchlorate and quinone reducing bacteria were enriched by the Fe-HA complex. Based on the analysis, the ClO4− bioreduction mechanism of the AnGSFH was revealed because the Fe-HA complex in the AnGS increased the biomass concentration, biological activity, and redox-active mediator and shifted the microbial community structure.
科研通智能强力驱动
Strongly Powered by AbleSci AI