An Open‐Source Computer Vision Tool for Automated Vocal Fold Tracking From Videoendoscopy

声带麻痹 声门 置信区间 麻痹 折叠(高阶函数) 平均差 计算机软件 声带 医学 人工智能 计算机科学 听力学 外科 内科学 计算科学 程序设计语言
作者
Nat Adamian,Matthew R. Naunheim,Nate Jowett
出处
期刊:Laryngoscope [Wiley]
卷期号:131 (1) 被引量:34
标识
DOI:10.1002/lary.28669
摘要

Objectives Contemporary clinical assessment of vocal fold adduction and abduction is qualitative and subjective. Herein is described a novel computer vision tool for automated quantitative tracking of vocal fold motion from videolaryngoscopy. The potential of this software as a diagnostic aid in unilateral vocal fold paralysis is demonstrated. Study Design Case‐control. Methods A deep‐learning algorithm was trained for vocal fold localization from videoendoscopy for automated frame‐wise estimation of glottic opening angles. Algorithm accuracy was compared against manual expert markings. Maximum glottic opening angles between adults with normal movements (N = 20) and those with unilateral vocal fold paralysis (N = 20) were characterized. Results Algorithm angle estimations demonstrated a correlation coefficient of 0.97 ( P < .001) and mean absolute difference of 3.72° (standard deviation [SD], 3.49°) in comparison to manual expert markings. In comparison to those with normal movements, patients with unilateral vocal fold paralysis demonstrated significantly lower maximal glottic opening angles (mean 68.75° ± 11.82° vs. 49.44° ± 10.42°; difference, 19.31°; 95% confidence interval [CI] [12.17°–26.44°]; P < .001). Maximum opening angle less than 58.65° predicted unilateral vocal fold paralysis with a sensitivity of 0.85 and specificity of 0.85, with an area under the receiver operating characteristic curve of 0.888 (95% CI [0.784–0.991]; P < .001). Conclusion A user‐friendly software tool for automated quantification of vocal fold movements from previously recorded videolaryngoscopy examinations is presented, termed automated glottic action tracking by artificial intelligence (AGATI) . This tool may prove useful for diagnosis and outcomes tracking of vocal fold movement disorders. Level of Evidence IV Laryngoscope , 131:E219–E225, 2021

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
炒栗子发布了新的文献求助10
刚刚
1秒前
1秒前
1秒前
1秒前
1秒前
1秒前
2秒前
2秒前
2秒前
瑜衡完成签到 ,获得积分20
2秒前
3秒前
冬弟发布了新的文献求助10
3秒前
3秒前
3秒前
3秒前
3秒前
4秒前
4秒前
4秒前
4秒前
4秒前
4秒前
5秒前
5秒前
量子星尘发布了新的文献求助10
5秒前
5秒前
5秒前
5秒前
6秒前
6秒前
6秒前
星辰大海应助炒栗子采纳,获得10
6秒前
6秒前
tf发布了新的文献求助10
6秒前
MLK发布了新的文献求助10
6秒前
6秒前
7秒前
7秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
从k到英国情人 1500
Ägyptische Geschichte der 21.–30. Dynastie 1100
„Semitische Wissenschaften“? 1100
Real World Research, 5th Edition 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5736834
求助须知:如何正确求助?哪些是违规求助? 5368742
关于积分的说明 15334181
捐赠科研通 4880593
什么是DOI,文献DOI怎么找? 2622909
邀请新用户注册赠送积分活动 1571817
关于科研通互助平台的介绍 1528640