亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Poor and rich optimization algorithm: A new human-based and multi populations algorithm

计算机科学 算法 趋同(经济学) 水准点(测量) 班级(哲学) 优化算法 维数(图论) 机器学习 数学优化 人工智能 数学 大地测量学 经济增长 经济 纯数学 地理
作者
Seyyed Hamid Samareh Moosavi,Vahid Khatibi Bardsiri
出处
期刊:Engineering Applications of Artificial Intelligence [Elsevier]
卷期号:86: 165-181 被引量:284
标识
DOI:10.1016/j.engappai.2019.08.025
摘要

This paper presents a new optimization algorithm called poor and rich optimization (PRO). This algorithm is inspired by the efforts of the two groups of the poor and the rich to achieve wealth and improve their economic situation. The rich always try to increase their class gap with the poor by gaining wealth from different ways. The rich are always trying to increase their class gap with the poor by acquiring wealth from different ways. On the other hand, the poor try to gain wealth and reduce their class gap with the rich. On the other hand, the poor try to gain wealth and reduce their class gap by modeling the rich. This struggle is always going on and should be mention that the poor may get rich and vice versa. The proposed algorithm is evaluated using 33 test functions and the simulation results are compared with a number of new and well-known optimization algorithms. The evaluation domain includes uni-modal, multi-modal, fixed dimension, hybrid and large scale functions. In addition, for more precise evaluation, Tension/compression spring design, pressure vessel design, Gear drain design, and three-bar truss design problems are solved by PRO algorithm. PRO algorithm has had better performance in these four problems by finding optimal values of parameters as compared to other algorithms. Finally, PRO algorithm was used to estimate software effort by UCP for more accurate evaluation. The obtained results confirmed the superiority of PRO in exploration, exploitation and convergence aspects, compared to other algorithms.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
10秒前
23秒前
1分钟前
1分钟前
小马甲应助科研通管家采纳,获得10
1分钟前
1分钟前
2分钟前
192724836发布了新的文献求助10
2分钟前
2分钟前
Easypass完成签到 ,获得积分10
2分钟前
慕青应助dihaha采纳,获得10
2分钟前
烟花应助Leo采纳,获得10
2分钟前
dihaha完成签到,获得积分10
2分钟前
Herbs完成签到 ,获得积分10
2分钟前
FashionBoy应助dihaha采纳,获得10
2分钟前
zqq完成签到,获得积分0
2分钟前
脑洞疼应助十三采纳,获得10
3分钟前
192724836完成签到,获得积分20
3分钟前
小锤发布了新的文献求助10
3分钟前
含蓄的寄翠完成签到,获得积分10
3分钟前
科研通AI2S应助192724836采纳,获得10
3分钟前
tinyliiyong完成签到,获得积分10
3分钟前
3分钟前
sss完成签到 ,获得积分10
3分钟前
小锤完成签到 ,获得积分20
3分钟前
李爱国应助科研通管家采纳,获得10
3分钟前
4分钟前
4分钟前
彭于晏应助十三采纳,获得10
4分钟前
布同完成签到,获得积分10
4分钟前
4分钟前
林思完成签到,获得积分10
4分钟前
老王家的二姑娘完成签到 ,获得积分10
4分钟前
平常的长颈鹿完成签到,获得积分10
4分钟前
852应助平常的长颈鹿采纳,获得10
4分钟前
4分钟前
FashionBoy应助KSung采纳,获得10
4分钟前
4分钟前
小胖子发布了新的文献求助10
5分钟前
机灵自中发布了新的文献求助50
5分钟前
高分求助中
Sustainability in ’Tides Chemistry 2000
Studien zur Ideengeschichte der Gesetzgebung 1000
The ACS Guide to Scholarly Communication 1000
TM 5-855-1(Fundamentals of protective design for conventional weapons) 1000
Handbook of the Mammals of the World – Volume 3: Primates 805
Ethnicities: Media, Health, and Coping 800
Gerard de Lairesse : an artist between stage and studio 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3072598
求助须知:如何正确求助?哪些是违规求助? 2726326
关于积分的说明 7493683
捐赠科研通 2374098
什么是DOI,文献DOI怎么找? 1258887
科研通“疑难数据库(出版商)”最低求助积分说明 610394
版权声明 596983