已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Poor and rich optimization algorithm: A new human-based and multi populations algorithm

计算机科学 算法 趋同(经济学) 水准点(测量) 班级(哲学) 优化算法 维数(图论) 机器学习 数学优化 人工智能 数学 大地测量学 经济增长 纯数学 经济 地理
作者
Seyyed Hamid Samareh Moosavi,Vahid Khatibi Bardsiri
出处
期刊:Engineering Applications of Artificial Intelligence [Elsevier]
卷期号:86: 165-181 被引量:284
标识
DOI:10.1016/j.engappai.2019.08.025
摘要

This paper presents a new optimization algorithm called poor and rich optimization (PRO). This algorithm is inspired by the efforts of the two groups of the poor and the rich to achieve wealth and improve their economic situation. The rich always try to increase their class gap with the poor by gaining wealth from different ways. The rich are always trying to increase their class gap with the poor by acquiring wealth from different ways. On the other hand, the poor try to gain wealth and reduce their class gap with the rich. On the other hand, the poor try to gain wealth and reduce their class gap by modeling the rich. This struggle is always going on and should be mention that the poor may get rich and vice versa. The proposed algorithm is evaluated using 33 test functions and the simulation results are compared with a number of new and well-known optimization algorithms. The evaluation domain includes uni-modal, multi-modal, fixed dimension, hybrid and large scale functions. In addition, for more precise evaluation, Tension/compression spring design, pressure vessel design, Gear drain design, and three-bar truss design problems are solved by PRO algorithm. PRO algorithm has had better performance in these four problems by finding optimal values of parameters as compared to other algorithms. Finally, PRO algorithm was used to estimate software effort by UCP for more accurate evaluation. The obtained results confirmed the superiority of PRO in exploration, exploitation and convergence aspects, compared to other algorithms.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
kenti2023完成签到 ,获得积分10
刚刚
Ni发布了新的文献求助10
3秒前
hh完成签到 ,获得积分10
4秒前
CR7发布了新的文献求助10
5秒前
7秒前
8秒前
陶醉的蜜蜂完成签到 ,获得积分10
9秒前
大树完成签到 ,获得积分10
10秒前
棠真完成签到 ,获得积分0
10秒前
Ni完成签到 ,获得积分20
11秒前
U87完成签到,获得积分10
12秒前
111完成签到 ,获得积分10
12秒前
CR7完成签到,获得积分10
12秒前
ROC发布了新的文献求助10
13秒前
郑zheng完成签到 ,获得积分10
15秒前
GingerF应助科研通管家采纳,获得50
17秒前
研友_VZG7GZ应助科研通管家采纳,获得10
17秒前
今后应助科研通管家采纳,获得10
17秒前
烟花应助科研通管家采纳,获得20
17秒前
充电宝应助科研通管家采纳,获得10
17秒前
Orange应助科研通管家采纳,获得10
17秒前
Owen应助牛哥采纳,获得10
17秒前
斯文败类应助科研通管家采纳,获得10
17秒前
17秒前
17秒前
shanmao完成签到,获得积分10
17秒前
FashionBoy应助wise111采纳,获得10
19秒前
Sharif318完成签到,获得积分10
21秒前
爆米花应助Dragonfln采纳,获得10
22秒前
22秒前
24秒前
Jenny712发布了新的文献求助10
24秒前
26秒前
3D完成签到 ,获得积分10
29秒前
oldblack发布了新的文献求助10
30秒前
调皮的灰狼完成签到,获得积分10
31秒前
31秒前
32秒前
Dragonfln完成签到,获得积分10
32秒前
爱撒娇的妙竹完成签到,获得积分10
32秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Bandwidth Choice for Bias Estimators in Dynamic Nonlinear Panel Models 2000
HIGH DYNAMIC RANGE CMOS IMAGE SENSORS FOR LOW LIGHT APPLICATIONS 1500
Constitutional and Administrative Law 1000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.). Frederic G. Reamer 800
Vertébrés continentaux du Crétacé supérieur de Provence (Sud-Est de la France) 600
Vertebrate Palaeontology, 5th Edition 530
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5356201
求助须知:如何正确求助?哪些是违规求助? 4488058
关于积分的说明 13971574
捐赠科研通 4388833
什么是DOI,文献DOI怎么找? 2411257
邀请新用户注册赠送积分活动 1403802
关于科研通互助平台的介绍 1377590