Poor and rich optimization algorithm: A new human-based and multi populations algorithm

计算机科学 算法 趋同(经济学) 水准点(测量) 班级(哲学) 优化算法 维数(图论) 机器学习 数学优化 人工智能 数学 大地测量学 经济增长 纯数学 经济 地理
作者
Seyyed Hamid Samareh Moosavi,Vahid Khatibi Bardsiri
出处
期刊:Engineering Applications of Artificial Intelligence [Elsevier BV]
卷期号:86: 165-181 被引量:284
标识
DOI:10.1016/j.engappai.2019.08.025
摘要

This paper presents a new optimization algorithm called poor and rich optimization (PRO). This algorithm is inspired by the efforts of the two groups of the poor and the rich to achieve wealth and improve their economic situation. The rich always try to increase their class gap with the poor by gaining wealth from different ways. The rich are always trying to increase their class gap with the poor by acquiring wealth from different ways. On the other hand, the poor try to gain wealth and reduce their class gap with the rich. On the other hand, the poor try to gain wealth and reduce their class gap by modeling the rich. This struggle is always going on and should be mention that the poor may get rich and vice versa. The proposed algorithm is evaluated using 33 test functions and the simulation results are compared with a number of new and well-known optimization algorithms. The evaluation domain includes uni-modal, multi-modal, fixed dimension, hybrid and large scale functions. In addition, for more precise evaluation, Tension/compression spring design, pressure vessel design, Gear drain design, and three-bar truss design problems are solved by PRO algorithm. PRO algorithm has had better performance in these four problems by finding optimal values of parameters as compared to other algorithms. Finally, PRO algorithm was used to estimate software effort by UCP for more accurate evaluation. The obtained results confirmed the superiority of PRO in exploration, exploitation and convergence aspects, compared to other algorithms.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Rubisco完成签到,获得积分10
刚刚
1秒前
量子星尘发布了新的文献求助10
1秒前
英俊的铭应助ltf采纳,获得10
1秒前
Steven完成签到,获得积分10
1秒前
1秒前
sujinyu发布了新的文献求助10
2秒前
球球发布了新的文献求助30
2秒前
汉堡包应助娇娇采纳,获得10
2秒前
2秒前
2秒前
raiychemj完成签到,获得积分10
3秒前
时尚初柳完成签到,获得积分10
3秒前
打打应助饭后瞌睡采纳,获得10
3秒前
SYLH应助时尚俊驰采纳,获得10
4秒前
天天快乐应助时尚俊驰采纳,获得10
4秒前
野火197完成签到,获得积分10
4秒前
sunshine完成签到,获得积分10
4秒前
香菜完成签到,获得积分10
4秒前
4秒前
汉堡包应助淘气科研采纳,获得10
5秒前
tsw发布了新的文献求助10
5秒前
情怀应助热心的代桃采纳,获得10
5秒前
CipherSage应助lin采纳,获得10
6秒前
刀刀完成签到,获得积分10
6秒前
6秒前
扁桃体不发言完成签到,获得积分10
6秒前
Yan发布了新的文献求助10
6秒前
英俊的铭应助Jiang采纳,获得10
7秒前
斯文败类应助Engen采纳,获得10
7秒前
li完成签到,获得积分10
7秒前
sy完成签到 ,获得积分10
7秒前
7秒前
YYL完成签到,获得积分10
8秒前
9秒前
9秒前
TANGTANG发布了新的文献求助10
9秒前
10秒前
桐桐应助科研专家采纳,获得10
10秒前
yufeng完成签到 ,获得积分10
10秒前
高分求助中
【提示信息,请勿应助】关于scihub 10000
A new approach to the extrapolation of accelerated life test data 1000
徐淮辽南地区新元古代叠层石及生物地层 500
Coking simulation aids on-stream time 450
康复物理因子治疗 400
北师大毕业论文 基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 390
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4016344
求助须知:如何正确求助?哪些是违规求助? 3556478
关于积分的说明 11321199
捐赠科研通 3289279
什么是DOI,文献DOI怎么找? 1812421
邀请新用户注册赠送积分活动 887952
科研通“疑难数据库(出版商)”最低求助积分说明 812060