材料科学
电磁屏蔽
复合材料
无定形固体
涂层
复合数
导电体
电磁干扰
电磁干扰
电气工程
工程类
有机化学
化学
作者
Jijun Zhang,Zexuan Wang,Jiawei Li,Yaqiang Dong,Aina He,Guoguo Tan,Qikui Man,Bin Shen,Xunsi Wang,Weixing Xia,Jun Shen,Xinmin Wang
标识
DOI:10.1016/j.jmst.2021.05.001
摘要
Manipulation of the internal architecture is essential for electromagnetic interference (EMI) shielding performance of metal-based coatings, which can address the electromagnetic pollution in large-size, complex geometries, and harsh environments. In this work, oriented segregated structure with conductive networks embedded in magnetic matrix was achieved in Fe-based amorphous coatings via Ni–Cu–P functionalization of (Fe0.76Si0.09B0.1P0.05)99Nb1 amorphous powder precursors and then thermal spraying them onto aluminum (Al) substrate. Benefiting from the unique magnetic-electric structure, the [email protected] composite delivered prominent EMI shielding performance. The EMI shielding effectiveness (SE) of modified [email protected] composite is ~41 dB at 8–12 GHz, doubling the value of Al substrate and is 15 dB greater than that of Ni–Cu–P-free [email protected] composite. Microstructure analysis showed that the introduced Ni−Cu−P insertions forcefully suppress the serious oxidation of the magnetic precursors during thermal spraying and form a dense conductive network in the magnetic matrix. Electron holography observation and electromagnetism simulation clarified that the modified coating can effectively trap and attenuate the incident radiations because of the electric loss from Ni−Cu−P conductive network, magnetic loss from Fe-based amorphous coating, and the electromagnetic interactions in the oriented segregated architectures. Moreover, the optimized thermal isolation and mechanical properties brought by structural improvement enable the coating to shield complex parts in thermal shock and mechanical loading environments. Our work gives an insight on the design strategies for metal-based EMI shielding materials and enriches the fundamental understanding of EMI shielding mechanisms.
科研通智能强力驱动
Strongly Powered by AbleSci AI