亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

SCA-CDNet: a robust siamese correlation-and-attention-based change detection network for bitemporal VHR images

计算机科学 过度拟合 变更检测 熵(时间箭头) 人工智能 交叉熵 数据挖掘 相关性 模式识别(心理学) 人工神经网络 机器学习 数学 几何学 量子力学 物理
作者
Shiyan Pang,Anran Zhang,Jingjing Hao,Fengzhu Liu,Jia Chen
出处
期刊:International Journal of Remote Sensing [Informa]
卷期号:43 (15-16): 6102-6123 被引量:11
标识
DOI:10.1080/01431161.2021.1941390
摘要

Change detection is a key step in various geographic information applications such as land cover change monitoring, agricultural assessment, natural disaster evaluation, and illegal building investigation. In practice, discovering, or outlining these changes is labour intensive and time-consuming. To address this problem, a novel end-to-end Siamese correlation-and-attention-based change detection network (SCA-CDNet) is proposed for bitemporal very-high-resolution images in this paper. In this method, five strategies are adopted to improve the final change detection results. First, data augmentation is used to reduce the overfitting effectively and improve the generalization ability of the training model. Second, in encoding, classic networks (e.g. ResNet) are introduced to extract the multiscale features of the image and make full use of the existing pretraining weights of the network to reduce the difficulty of subsequent model training. Third, a new correlation module is designed to stack the above bitemporal features correspondingly and extract change features with smaller dimensions. Fourth, an attention model is introduced between the correlation module and the decoder module to make the network pay more attention to areas or channels with a greater effect on change analysis. Fifth, a new weighted cross-entropy loss function is designed, which enables training to focus on error detection and improve the final accuracy of the training model. Finally, extensive experimental results on three public data sets including the evaluation of data augmentation, ablation study, and comparison with the state of the art demonstrate the effectiveness and superiority of our proposed method, achieving an intersection of union (IoU) of 84.15%, 83.50%, and 77.29% on the three data sets, respectively.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
caroline完成签到 ,获得积分10
6秒前
平常远山发布了新的文献求助10
7秒前
丘比特应助虚幻的不评采纳,获得10
9秒前
英俊的铭应助Ade阿德采纳,获得10
23秒前
32秒前
科研通AI40应助小陈加油呀采纳,获得10
37秒前
归尘应助lalalatiancai采纳,获得10
42秒前
42秒前
43秒前
49秒前
Ade阿德发布了新的文献求助10
50秒前
lalalatiancai完成签到,获得积分10
59秒前
1分钟前
浦肯野应助VDC采纳,获得200
1分钟前
戴哈哈发布了新的文献求助10
1分钟前
爆米花应助戴哈哈采纳,获得10
1分钟前
VDC给VDC的求助进行了留言
1分钟前
欢呼洋葱应助科研通管家采纳,获得20
2分钟前
Orange应助科研通管家采纳,获得10
2分钟前
2分钟前
黑大侠完成签到 ,获得积分10
2分钟前
2分钟前
hxd完成签到,获得积分20
2分钟前
moonlight完成签到,获得积分10
2分钟前
科目三应助懵懂的怜南采纳,获得10
2分钟前
科研通AI40应助虚幻的不评采纳,获得10
2分钟前
2分钟前
白丁香完成签到,获得积分10
2分钟前
2分钟前
2分钟前
李家静完成签到 ,获得积分10
2分钟前
2分钟前
轻松凝梦发布了新的文献求助20
2分钟前
2分钟前
Owen应助小陈加油呀采纳,获得10
3分钟前
3分钟前
3分钟前
CipherSage应助懵懂的怜南采纳,获得10
3分钟前
3分钟前
高分求助中
Genetics: From Genes to Genomes 3000
Production Logging: Theoretical and Interpretive Elements 2500
Continuum thermodynamics and material modelling 2000
Healthcare Finance: Modern Financial Analysis for Accelerating Biomedical Innovation 2000
Applications of Emerging Nanomaterials and Nanotechnology 1111
Les Mantodea de Guyane Insecta, Polyneoptera 1000
Diabetes: miniguías Asklepios 800
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3471404
求助须知:如何正确求助?哪些是违规求助? 3064459
关于积分的说明 9088176
捐赠科研通 2755113
什么是DOI,文献DOI怎么找? 1511775
邀请新用户注册赠送积分活动 698575
科研通“疑难数据库(出版商)”最低求助积分说明 698460