High-Throughput Precision Phenotyping of Left Ventricular Hypertrophy With Cardiovascular Deep Learning

肥厚性心肌病 心脏淀粉样变性 心脏病学 心肌病 内科学 胸骨旁线 医学 队列 左心室肥大 心脏病 心力衰竭 放射科 肌肉肥大 血压
作者
Grant Duffy,Paul Cheng,Neal Yuan,Bryan He,Alan C. Kwan,Matthew Shun-Shin,Kevin Alexander,Susan Cheng,Matthew P. Lungren,Florian Rader,David Liang,Ingela Schnittger,Euan A. Ashley,James Zou,Jignesh Patel,Ronald Witteles,Susan Cheng,David Ouyang
出处
期刊:JAMA Cardiology [American Medical Association]
卷期号:7 (4): 386-386 被引量:74
标识
DOI:10.1001/jamacardio.2021.6059
摘要

Early detection and characterization of increased left ventricular (LV) wall thickness can markedly impact patient care but is limited by under-recognition of hypertrophy, measurement error and variability, and difficulty differentiating causes of increased wall thickness, such as hypertrophy, cardiomyopathy, and cardiac amyloidosis.To assess the accuracy of a deep learning workflow in quantifying ventricular hypertrophy and predicting the cause of increased LV wall thickness.This cohort study included physician-curated cohorts from the Stanford Amyloid Center and Cedars-Sinai Medical Center (CSMC) Advanced Heart Disease Clinic for cardiac amyloidosis and the Stanford Center for Inherited Cardiovascular Disease and the CSMC Hypertrophic Cardiomyopathy Clinic for hypertrophic cardiomyopathy from January 1, 2008, to December 31, 2020. The deep learning algorithm was trained and tested on retrospectively obtained independent echocardiogram videos from Stanford Healthcare, CSMC, and the Unity Imaging Collaborative.The main outcome was the accuracy of the deep learning algorithm in measuring left ventricular dimensions and identifying patients with increased LV wall thickness diagnosed with hypertrophic cardiomyopathy and cardiac amyloidosis.The study included 23 745 patients: 12 001 from Stanford Health Care (6509 [54.2%] female; mean [SD] age, 61.6 [17.4] years) and 1309 from CSMC (808 [61.7%] female; mean [SD] age, 62.8 [17.2] years) with parasternal long-axis videos and 8084 from Stanford Health Care (4201 [54.0%] female; mean [SD] age, 69.1 [16.8] years) and 2351 from CSMS (6509 [54.2%] female; mean [SD] age, 69.6 [14.7] years) with apical 4-chamber videos. The deep learning algorithm accurately measured intraventricular wall thickness (mean absolute error [MAE], 1.2 mm; 95% CI, 1.1-1.3 mm), LV diameter (MAE, 2.4 mm; 95% CI, 2.2-2.6 mm), and posterior wall thickness (MAE, 1.4 mm; 95% CI, 1.2-1.5 mm) and classified cardiac amyloidosis (area under the curve [AUC], 0.83) and hypertrophic cardiomyopathy (AUC, 0.98) separately from other causes of LV hypertrophy. In external data sets from independent domestic and international health care systems, the deep learning algorithm accurately quantified ventricular parameters (domestic: R2, 0.96; international: R2, 0.90). For the domestic data set, the MAE was 1.7 mm (95% CI, 1.6-1.8 mm) for intraventricular septum thickness, 3.8 mm (95% CI, 3.5-4.0 mm) for LV internal dimension, and 1.8 mm (95% CI, 1.7-2.0 mm) for LV posterior wall thickness. For the international data set, the MAE was 1.7 mm (95% CI, 1.5-2.0 mm) for intraventricular septum thickness, 2.9 mm (95% CI, 2.4-3.3 mm) for LV internal dimension, and 2.3 mm (95% CI, 1.9-2.7 mm) for LV posterior wall thickness. The deep learning algorithm accurately detected cardiac amyloidosis (AUC, 0.79) and hypertrophic cardiomyopathy (AUC, 0.89) in the domestic external validation site.In this cohort study, the deep learning model accurately identified subtle changes in LV wall geometric measurements and the causes of hypertrophy. Unlike with human experts, the deep learning workflow is fully automated, allowing for reproducible, precise measurements, and may provide a foundation for precision diagnosis of cardiac hypertrophy.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
陌予完成签到 ,获得积分10
2秒前
打打应助凤梨采纳,获得10
2秒前
蟹蟹发布了新的文献求助100
5秒前
江山完成签到,获得积分10
6秒前
旺仔先生完成签到,获得积分0
7秒前
未央完成签到,获得积分10
8秒前
yx_cheng应助罗氏集团采纳,获得10
9秒前
faye502完成签到 ,获得积分10
11秒前
刻苦的战斗机完成签到,获得积分20
12秒前
高伟杰完成签到,获得积分10
12秒前
cjm发布了新的文献求助10
15秒前
16秒前
17秒前
17秒前
Owen应助XYX采纳,获得10
18秒前
19秒前
HSA发布了新的文献求助10
21秒前
22秒前
阿波罗发布了新的文献求助10
23秒前
24秒前
24秒前
xx完成签到,获得积分10
26秒前
凤梨发布了新的文献求助10
29秒前
29秒前
XYX发布了新的文献求助10
30秒前
1234发布了新的文献求助10
32秒前
韭菜盒子完成签到,获得积分20
33秒前
ssp关闭了ssp文献求助
34秒前
35秒前
无花果应助Yatpome采纳,获得10
35秒前
Erin完成签到,获得积分10
35秒前
善学以致用应助1111采纳,获得10
36秒前
czx完成签到,获得积分10
37秒前
dej完成签到,获得积分10
37秒前
38秒前
Aierlan611发布了新的文献求助10
40秒前
等待冰露完成签到 ,获得积分10
43秒前
43秒前
NexusExplorer应助七个丸子采纳,获得30
44秒前
高分求助中
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
A new approach to the extrapolation of accelerated life test data 1000
Problems of point-blast theory 400
Indomethacinのヒトにおける経皮吸収 400
北师大毕业论文 基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 390
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3997611
求助须知:如何正确求助?哪些是违规求助? 3537154
关于积分的说明 11270819
捐赠科研通 3276323
什么是DOI,文献DOI怎么找? 1806885
邀请新用户注册赠送积分活动 883576
科研通“疑难数据库(出版商)”最低求助积分说明 809975