亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

High-Throughput Precision Phenotyping of Left Ventricular Hypertrophy With Cardiovascular Deep Learning

肥厚性心肌病 心脏淀粉样变性 心脏病学 心肌病 内科学 胸骨旁线 医学 队列 左心室肥大 心脏病 心力衰竭 放射科 肌肉肥大 血压
作者
Grant Duffy,Paul Cheng,Neal Yuan,Bryan He,Alan C. Kwan,Matthew Shun-Shin,Kevin Alexander,Susan Cheng,Matthew P. Lungren,Florian Rader,David Liang,Ingela Schnittger,Euan A. Ashley,James Zou,Jignesh Patel,Ronald Witteles,Susan Cheng,David Ouyang
出处
期刊:JAMA Cardiology [American Medical Association]
卷期号:7 (4): 386-386 被引量:74
标识
DOI:10.1001/jamacardio.2021.6059
摘要

Early detection and characterization of increased left ventricular (LV) wall thickness can markedly impact patient care but is limited by under-recognition of hypertrophy, measurement error and variability, and difficulty differentiating causes of increased wall thickness, such as hypertrophy, cardiomyopathy, and cardiac amyloidosis.To assess the accuracy of a deep learning workflow in quantifying ventricular hypertrophy and predicting the cause of increased LV wall thickness.This cohort study included physician-curated cohorts from the Stanford Amyloid Center and Cedars-Sinai Medical Center (CSMC) Advanced Heart Disease Clinic for cardiac amyloidosis and the Stanford Center for Inherited Cardiovascular Disease and the CSMC Hypertrophic Cardiomyopathy Clinic for hypertrophic cardiomyopathy from January 1, 2008, to December 31, 2020. The deep learning algorithm was trained and tested on retrospectively obtained independent echocardiogram videos from Stanford Healthcare, CSMC, and the Unity Imaging Collaborative.The main outcome was the accuracy of the deep learning algorithm in measuring left ventricular dimensions and identifying patients with increased LV wall thickness diagnosed with hypertrophic cardiomyopathy and cardiac amyloidosis.The study included 23 745 patients: 12 001 from Stanford Health Care (6509 [54.2%] female; mean [SD] age, 61.6 [17.4] years) and 1309 from CSMC (808 [61.7%] female; mean [SD] age, 62.8 [17.2] years) with parasternal long-axis videos and 8084 from Stanford Health Care (4201 [54.0%] female; mean [SD] age, 69.1 [16.8] years) and 2351 from CSMS (6509 [54.2%] female; mean [SD] age, 69.6 [14.7] years) with apical 4-chamber videos. The deep learning algorithm accurately measured intraventricular wall thickness (mean absolute error [MAE], 1.2 mm; 95% CI, 1.1-1.3 mm), LV diameter (MAE, 2.4 mm; 95% CI, 2.2-2.6 mm), and posterior wall thickness (MAE, 1.4 mm; 95% CI, 1.2-1.5 mm) and classified cardiac amyloidosis (area under the curve [AUC], 0.83) and hypertrophic cardiomyopathy (AUC, 0.98) separately from other causes of LV hypertrophy. In external data sets from independent domestic and international health care systems, the deep learning algorithm accurately quantified ventricular parameters (domestic: R2, 0.96; international: R2, 0.90). For the domestic data set, the MAE was 1.7 mm (95% CI, 1.6-1.8 mm) for intraventricular septum thickness, 3.8 mm (95% CI, 3.5-4.0 mm) for LV internal dimension, and 1.8 mm (95% CI, 1.7-2.0 mm) for LV posterior wall thickness. For the international data set, the MAE was 1.7 mm (95% CI, 1.5-2.0 mm) for intraventricular septum thickness, 2.9 mm (95% CI, 2.4-3.3 mm) for LV internal dimension, and 2.3 mm (95% CI, 1.9-2.7 mm) for LV posterior wall thickness. The deep learning algorithm accurately detected cardiac amyloidosis (AUC, 0.79) and hypertrophic cardiomyopathy (AUC, 0.89) in the domestic external validation site.In this cohort study, the deep learning model accurately identified subtle changes in LV wall geometric measurements and the causes of hypertrophy. Unlike with human experts, the deep learning workflow is fully automated, allowing for reproducible, precise measurements, and may provide a foundation for precision diagnosis of cardiac hypertrophy.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
4秒前
空白格完成签到 ,获得积分10
11秒前
嘻嘻嘻完成签到 ,获得积分10
43秒前
月亮啊完成签到 ,获得积分10
43秒前
单于笑卉完成签到,获得积分10
47秒前
单于笑卉发布了新的文献求助10
50秒前
小莨应助火星上映易采纳,获得10
51秒前
1分钟前
1分钟前
1分钟前
ding应助科研通管家采纳,获得10
1分钟前
科研通AI6应助科研通管家采纳,获得10
1分钟前
共享精神应助科研通管家采纳,获得10
1分钟前
爆米花应助任性学姐采纳,获得10
1分钟前
1分钟前
1分钟前
1分钟前
1分钟前
1分钟前
杀毒武器胡完成签到,获得积分10
1分钟前
任性学姐发布了新的文献求助10
1分钟前
今后应助任性学姐采纳,获得10
2分钟前
美满尔蓝完成签到,获得积分10
2分钟前
2分钟前
撒旦asd完成签到,获得积分20
2分钟前
上官若男应助Yangqx007采纳,获得10
2分钟前
Henvy完成签到,获得积分10
2分钟前
2分钟前
任性学姐发布了新的文献求助10
2分钟前
2分钟前
坚果完成签到,获得积分20
3分钟前
3分钟前
科研通AI6.1应助任性学姐采纳,获得10
3分钟前
Cher.发布了新的文献求助10
3分钟前
Owen应助科研通管家采纳,获得10
3分钟前
科研通AI6应助科研通管家采纳,获得10
3分钟前
周曦完成签到,获得积分10
3分钟前
3分钟前
懵懂的凝丹完成签到 ,获得积分10
3分钟前
西红柿有饭吃吗完成签到,获得积分10
3分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Human Embryology and Developmental Biology 7th Edition 2000
The Developing Human: Clinically Oriented Embryology 12th Edition 2000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
从k到英国情人 1500
„Semitische Wissenschaften“? 1110
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5739408
求助须知:如何正确求助?哪些是违规求助? 5386143
关于积分的说明 15339719
捐赠科研通 4881969
什么是DOI,文献DOI怎么找? 2624052
邀请新用户注册赠送积分活动 1572745
关于科研通互助平台的介绍 1529540