High-Throughput Precision Phenotyping of Left Ventricular Hypertrophy With Cardiovascular Deep Learning

肥厚性心肌病 心脏淀粉样变性 心脏病学 心肌病 内科学 胸骨旁线 医学 队列 左心室肥大 心脏病 心力衰竭 放射科 肌肉肥大 血压
作者
Grant Duffy,Paul Cheng,Neal Yuan,Bryan He,Alan C. Kwan,Matthew Shun-Shin,Kevin Alexander,Susan Cheng,Matthew P. Lungren,Florian Rader,David Liang,Ingela Schnittger,Euan A. Ashley,James Zou,Jignesh Patel,Ronald Witteles,Susan Cheng,David Ouyang
出处
期刊:JAMA Cardiology [American Medical Association]
卷期号:7 (4): 386-386 被引量:74
标识
DOI:10.1001/jamacardio.2021.6059
摘要

Early detection and characterization of increased left ventricular (LV) wall thickness can markedly impact patient care but is limited by under-recognition of hypertrophy, measurement error and variability, and difficulty differentiating causes of increased wall thickness, such as hypertrophy, cardiomyopathy, and cardiac amyloidosis.To assess the accuracy of a deep learning workflow in quantifying ventricular hypertrophy and predicting the cause of increased LV wall thickness.This cohort study included physician-curated cohorts from the Stanford Amyloid Center and Cedars-Sinai Medical Center (CSMC) Advanced Heart Disease Clinic for cardiac amyloidosis and the Stanford Center for Inherited Cardiovascular Disease and the CSMC Hypertrophic Cardiomyopathy Clinic for hypertrophic cardiomyopathy from January 1, 2008, to December 31, 2020. The deep learning algorithm was trained and tested on retrospectively obtained independent echocardiogram videos from Stanford Healthcare, CSMC, and the Unity Imaging Collaborative.The main outcome was the accuracy of the deep learning algorithm in measuring left ventricular dimensions and identifying patients with increased LV wall thickness diagnosed with hypertrophic cardiomyopathy and cardiac amyloidosis.The study included 23 745 patients: 12 001 from Stanford Health Care (6509 [54.2%] female; mean [SD] age, 61.6 [17.4] years) and 1309 from CSMC (808 [61.7%] female; mean [SD] age, 62.8 [17.2] years) with parasternal long-axis videos and 8084 from Stanford Health Care (4201 [54.0%] female; mean [SD] age, 69.1 [16.8] years) and 2351 from CSMS (6509 [54.2%] female; mean [SD] age, 69.6 [14.7] years) with apical 4-chamber videos. The deep learning algorithm accurately measured intraventricular wall thickness (mean absolute error [MAE], 1.2 mm; 95% CI, 1.1-1.3 mm), LV diameter (MAE, 2.4 mm; 95% CI, 2.2-2.6 mm), and posterior wall thickness (MAE, 1.4 mm; 95% CI, 1.2-1.5 mm) and classified cardiac amyloidosis (area under the curve [AUC], 0.83) and hypertrophic cardiomyopathy (AUC, 0.98) separately from other causes of LV hypertrophy. In external data sets from independent domestic and international health care systems, the deep learning algorithm accurately quantified ventricular parameters (domestic: R2, 0.96; international: R2, 0.90). For the domestic data set, the MAE was 1.7 mm (95% CI, 1.6-1.8 mm) for intraventricular septum thickness, 3.8 mm (95% CI, 3.5-4.0 mm) for LV internal dimension, and 1.8 mm (95% CI, 1.7-2.0 mm) for LV posterior wall thickness. For the international data set, the MAE was 1.7 mm (95% CI, 1.5-2.0 mm) for intraventricular septum thickness, 2.9 mm (95% CI, 2.4-3.3 mm) for LV internal dimension, and 2.3 mm (95% CI, 1.9-2.7 mm) for LV posterior wall thickness. The deep learning algorithm accurately detected cardiac amyloidosis (AUC, 0.79) and hypertrophic cardiomyopathy (AUC, 0.89) in the domestic external validation site.In this cohort study, the deep learning model accurately identified subtle changes in LV wall geometric measurements and the causes of hypertrophy. Unlike with human experts, the deep learning workflow is fully automated, allowing for reproducible, precise measurements, and may provide a foundation for precision diagnosis of cardiac hypertrophy.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
石斑鱼完成签到,获得积分10
刚刚
科研小垃圾完成签到,获得积分10
刚刚
刘xiansheng完成签到,获得积分10
刚刚
单薄惜文完成签到,获得积分10
1秒前
在路上发布了新的文献求助10
1秒前
华仔应助zzz采纳,获得10
1秒前
科研通AI2S应助Tao采纳,获得30
2秒前
斯文败类应助科研通管家采纳,获得10
3秒前
ma发布了新的文献求助10
3秒前
3秒前
SciGPT应助乐观桐采纳,获得10
4秒前
小王发布了新的文献求助10
4秒前
gaozengxiang完成签到,获得积分10
4秒前
敏敏完成签到,获得积分10
5秒前
5秒前
CipherSage应助冰勾板勾采纳,获得10
5秒前
6秒前
范麒如完成签到,获得积分10
6秒前
7秒前
CipherSage应助自由蓉采纳,获得10
7秒前
8秒前
8秒前
在路上完成签到,获得积分10
8秒前
许鑫鑫发布了新的文献求助10
9秒前
yyyy完成签到 ,获得积分20
9秒前
9秒前
9秒前
zhaof发布了新的文献求助10
10秒前
11秒前
ANON_TOKYO发布了新的文献求助10
12秒前
番茄酱完成签到,获得积分10
12秒前
木木彡完成签到 ,获得积分10
12秒前
13秒前
zzz发布了新的文献求助10
13秒前
卡卡西的猫完成签到 ,获得积分10
13秒前
南瓜汤完成签到,获得积分10
13秒前
13秒前
科研通AI2S应助没所谓采纳,获得10
13秒前
Time完成签到,获得积分20
13秒前
踏实的嵩完成签到,获得积分10
14秒前
高分求助中
Sustainability in Tides Chemistry 2000
Bayesian Models of Cognition:Reverse Engineering the Mind 800
Essentials of thematic analysis 700
A Dissection Guide & Atlas to the Rabbit 600
Very-high-order BVD Schemes Using β-variable THINC Method 568
Внешняя политика КНР: о сущности внешнеполитического курса современного китайского руководства 500
Revolution und Konterrevolution in China [by A. Losowsky] 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3123170
求助须知:如何正确求助?哪些是违规求助? 2773659
关于积分的说明 7718928
捐赠科研通 2429325
什么是DOI,文献DOI怎么找? 1290230
科研通“疑难数据库(出版商)”最低求助积分说明 621795
版权声明 600251