Orange-Emissive Sulfur-Doped Organosilica Nanodots for Metal Ion/Glutathione Detection and Normal/Cancer Cell Identification

水溶液中的金属离子 谷胱甘肽 纳米点 纳米传感器 金属 生物分子 组合化学 化学 荧光 材料科学 纳米技术 光化学 检出限 有机化学 生物化学 色谱法 量子力学 物理
作者
Jia Zeng,Xian-Wu Hua,Yan-Wen Bao,Fu‐Gen Wu
出处
期刊:ACS applied nano materials [American Chemical Society]
卷期号:4 (6): 6083-6092 被引量:19
标识
DOI:10.1021/acsanm.1c00906
摘要

Developing a single nanosensor capable of detecting multiple metal ions or biomolecules remains a challenge. Here, we successfully developed a sensing platform for the efficient detection of various metal ions with orange-emissive sulfur-doped organosilica nanodots (S-OSiNDs). The S-OSiNDs were prepared via a one-pot solvothermal treatment of urea, citric acid, and bis[3-(triethoxysilyl)propyl]tetrasulfide in N,N-dimethylformamide. The as-prepared S-OSiNDs showed a turn-off fluorescence response toward multiple metal ions including Cu2+, Fe3+, [PdCl4]2–, Ag+, Hg2+, and Bi3+, realizing the rapid and sensitive detection with a very low detection limit of 0.6 nM (for Cu2+). In addition, the metal ion-induced fluorescence quenching of S-OSiNDs could be selectively restored by glutathione (GSH), exhibiting a sensitive GSH detection capability with low detection limits ranging from 0.03 to 0.2 μM. On the basis of the metal ion/GSH-triggered on–off–on regulation of the S-OSiNDs' fluorescence, we successfully realized the detection of Cu2+, Fe3+, [PdCl4]2–, Ag+, Hg2+, and Bi3+ and achieved cancer/normal cell identification via fluorescence microscopic imaging. Overall, the S-OSiNDs may possess great potential for the detection of multiple metal ions in environmental monitoring and clinical diagnosis, and may also serve as a robust platform for cancer cell imaging and identification because of their capacity of highly sensitive sensing of GSH, which is overexpressed in many cancer cells. Furthermore, the present work also demonstrates that S-OSiNDs can be used for the facile synthesis of metal-incorporated nanoparticles, which we believe may find various applications in the future.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
傅傅发布了新的文献求助30
刚刚
1秒前
kim发布了新的文献求助10
3秒前
受伤的小松鼠应助一沙采纳,获得10
3秒前
3秒前
4秒前
科研通AI2S应助扶余山本采纳,获得10
4秒前
Lucas应助拉面小丸子采纳,获得10
4秒前
Fengh发布了新的文献求助10
5秒前
wy.he举报涵Allen求助涉嫌违规
5秒前
万椿发布了新的文献求助10
5秒前
5秒前
6秒前
若冰完成签到,获得积分10
6秒前
6秒前
共享精神应助i7采纳,获得10
7秒前
xiong发布了新的文献求助10
7秒前
7秒前
8秒前
awrawsaf发布了新的文献求助10
8秒前
深情安青应助gshsj采纳,获得10
9秒前
9秒前
9秒前
10秒前
一帆风顺发布了新的文献求助10
10秒前
Devoted完成签到,获得积分20
11秒前
11秒前
香蕉觅云应助实验的兔纸采纳,获得10
11秒前
12秒前
SYLH应助锅锅采纳,获得10
12秒前
12秒前
赫哲瀚完成签到,获得积分10
12秒前
哈皮完成签到,获得积分10
13秒前
13秒前
13秒前
Devoted发布了新的文献求助10
13秒前
珈小羽完成签到,获得积分10
13秒前
14秒前
高分求助中
Applied Survey Data Analysis (第三版, 2025) 800
Assessing and Diagnosing Young Children with Neurodevelopmental Disorders (2nd Edition) 700
Images that translate 500
Algorithmic Mathematics in Machine Learning 500
Handbook of Innovations in Political Psychology 400
Mapping the Stars: Celebrity, Metonymy, and the Networked Politics of Identity 400
Nucleophilic substitution in azasydnone-modified dinitroanisoles 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3842039
求助须知:如何正确求助?哪些是违规求助? 3384234
关于积分的说明 10533093
捐赠科研通 3104526
什么是DOI,文献DOI怎么找? 1709663
邀请新用户注册赠送积分活动 823319
科研通“疑难数据库(出版商)”最低求助积分说明 773953