医学
微泡
小RNA
伤口愈合
干细胞
免疫印迹
脂肪组织
转染
分子生物学
细胞生物学
免疫学
癌症研究
血管生成
生物
细胞培养
内科学
基因
生物化学
遗传学
作者
Gangquan Chen,Yang Wu,Lijin Zou,Yuanlin Zeng
标识
DOI:10.1177/15347346211038092
摘要
Objective: To investigate the effect of MicroRNA-146a modified adipose-derived stem cell exosomes on the proliferation and migration of fibroblasts and the therapeutic effect on wound healing. Methods: Culture and identification of human adipose-derived stem cells (hASCs), miRNA-146a minic vector was constructed and transfected into hASCs, the exosomes of the empty group and overexpression group were extracted, identified, and quantitatively analyzed after 24 h of successful transfection. The exosomes were added into National Institute of Health Mouse Embryonic Fibroblasts (NIH/3T3) and cultured for 48 h, the proliferation and migration ability of NIH/3T3 fibroblasts was detected. The expression of serpin family H member 1 (SERPINH1) and phosphorylated extracellular regulated protein kinase (p-ERK) was detected by Western blot. The model of back wound was established. The exosomes were injected into 4 different sites with the shape of "cross" around the wound, and the scar diameter of the skin defect was measured at 3, 7, and 11 days, the skin of the defect was taken on the 14th day. platelet endothelial cell adhesion molecule-1 (CD31) was detected by immunofluorescence staining to evaluate angiogenesis, and Western blot was used to detect the expression of SERPINH1 and p-ERK. Results: The miR-146a mimic-exosome promoted the proliferation and migration of fibroblasts, and the expression of SERPINH1 and p-ERK2 was up-regulated. After the rats were treated with exosomes, the wound area decreased rapidly, neovascularization was promoted, and the expression of SERPINH1 and p-ERK2 was up-regulated. Conclusions: MicroRNA-146a modified adipose stem cell exosomes could regulate the expression of SERPINH1 and p-ERK, promote the migration and proliferation of fibroblasts, and neovascularization to promote the wound healing of rat back.
科研通智能强力驱动
Strongly Powered by AbleSci AI