Evolving Schema for Employing Network Biology Approaches to Understand Pulmonary Hypertension

疾病 生物网络 鉴定(生物学) 还原论 生物信息学 基因组学 计算机科学 药物开发 模拟生物系统 蛋白质组学 基因调控网络 肺动脉高压 计算生物学 生物 医学 系统生物学 生物信息学 基因 药品 遗传学 药理学 基因组 认识论 哲学 病理 植物
作者
Shohini Ghosh-Choudhary,Stephen L. Chan
出处
期刊:Advances in Experimental Medicine and Biology
标识
DOI:10.1007/978-3-030-63046-1_4
摘要

Reductionist approaches have served as the cornerstone for traditional mechanistic endeavors in biomedical research. However, for pulmonary hypertension (PH), a relatively rare but deadly vascular disease of the lungs, the use of traditional reductionist approaches has failed to define the complexities of pathogenesis. With the development of new -omics platforms (i.e., genomics, transcriptomics, proteomics, and metabolomics, among others), network biology approaches have offered new pipelines for discovery of human disease pathogenesis. Human disease processes are driven by multiple genes that are dysregulated which are affected by regulatory networks. Network theory allows for the identification of such gene clusters which are dysregulated in various disease states. This framework may in part explain why current therapeutics that seek to target a single part of a dysregulated cluster may fail to provide clinically significant improvements. Correspondingly, network biology could further the development of novel therapeutics which target clusters of "disease genes" so that a disease phenotype can be more robustly addressed. In this chapter, we seek to explain the theory behind network biology approaches to identify drivers of disease as well as how network biology approaches have been used in the field of PH. Furthermore, we discuss an example of in silico methodology using network pharmacology in conjunction with gene networks tools to identify drugs and drug targets. We discuss similarities between the pathogenesis of PH and other disease states, specifically cancer, and how tools developed for cancer may be repurposed to fill the gaps in research in PH. Finally, we discuss new approaches which seek to integrate clinical health record data into networks so that correlations between disease genes and clinical parameters can be explored in the context of this disease.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Akim应助申木采纳,获得30
刚刚
2秒前
4秒前
6秒前
cookie发布了新的文献求助10
6秒前
完美世界应助Fine采纳,获得10
6秒前
a烂发布了新的文献求助20
9秒前
漓子发布了新的文献求助50
9秒前
顾君如完成签到 ,获得积分10
11秒前
12秒前
12秒前
852应助xianxian采纳,获得10
12秒前
香蕉觅云应助yanzinie采纳,获得10
15秒前
乔心发布了新的文献求助10
15秒前
16秒前
zxp发布了新的文献求助30
17秒前
Fine发布了新的文献求助10
19秒前
Orange应助乔心采纳,获得10
19秒前
LilyChen发布了新的文献求助10
19秒前
Hello应助steven采纳,获得10
20秒前
庸人自扰完成签到,获得积分10
21秒前
科研通AI2S应助a烂采纳,获得10
22秒前
22秒前
喵喵怕恰兔完成签到 ,获得积分10
24秒前
25秒前
Jackie完成签到,获得积分10
25秒前
小蒋完成签到 ,获得积分10
25秒前
研友_VZG7GZ应助吱哦周采纳,获得10
26秒前
eka123发布了新的文献求助10
28秒前
ruanruan完成签到,获得积分10
28秒前
28秒前
害羞的白晴完成签到,获得积分10
29秒前
29秒前
Owen应助11采纳,获得10
30秒前
JamesPei应助cookie采纳,获得10
32秒前
BYN完成签到 ,获得积分10
33秒前
steven发布了新的文献求助10
35秒前
36秒前
37秒前
无情的聋五完成签到 ,获得积分10
41秒前
高分求助中
Rock-Forming Minerals, Volume 3C, Sheet Silicates: Clay Minerals 2000
The late Devonian Standard Conodont Zonation 2000
Nickel superalloy market size, share, growth, trends, and forecast 2023-2030 2000
The Lali Section: An Excellent Reference Section for Upper - Devonian in South China 1500
Very-high-order BVD Schemes Using β-variable THINC Method 930
The Healthy Socialist Life in Maoist China 600
The Vladimirov Diaries [by Peter Vladimirov] 600
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3266236
求助须知:如何正确求助?哪些是违规求助? 2906047
关于积分的说明 8336505
捐赠科研通 2576446
什么是DOI,文献DOI怎么找? 1400528
科研通“疑难数据库(出版商)”最低求助积分说明 654786
邀请新用户注册赠送积分活动 633661