Contracting, Pricing, and Data Collection Under the AI Flywheel Effect

杠杆(统计) 利润(经济学) 激励 数据收集 计算机科学 微观经济学 道德风险 瓶颈 外部性 产品(数学) 经济 运营管理 人工智能 几何学 数学 统计
作者
Hüseyin Gürkan,Francis de Véricourt
出处
期刊:Management Science [Institute for Operations Research and the Management Sciences]
卷期号:68 (12): 8791-8808 被引量:32
标识
DOI:10.1287/mnsc.2022.4333
摘要

This paper explores how firms that lack expertise in machine learning (ML) can leverage the so-called AI Flywheel effect. This effect designates a virtuous cycle by which as an ML product is adopted and new user data are fed back to the algorithm, the product improves, enabling further adoptions. However, managing this feedback loop is difficult, especially when the algorithm is contracted out. Indeed, the additional data that the AI Flywheel effect generates may change the provider’s incentives to improve the algorithm over time. We formalize this problem in a simple two-period moral hazard framework that captures the main dynamics among ML, data acquisition, pricing, and contracting. We find that the firm’s decisions crucially depend on how the amount of data on which the machine is trained interacts with the provider’s effort. If this effort has a more (less) significant impact on accuracy for larger volumes of data, the firm underprices (overprices) the product. Interestingly, these distortions sometimes improve social welfare, which accounts for the customer surplus and profits of both the firm and provider. Further, the interaction between incentive issues and the positive externalities of the AI Flywheel effect has important implications for the firm’s data collection strategy. In particular, the firm can boost its profit by increasing the product’s capacity to acquire usage data only up to a certain level. If the product collects too much data per user, the firm’s profit may actually decrease (i.e., more data are not necessarily better). This paper was accepted by Jayashankar Swaminathan, operations management. Supplemental Material: The data files and e-companion are available at https://doi.org/10.1287/mnsc.2022.4333 .
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
个性的依风完成签到,获得积分10
刚刚
1秒前
1秒前
LGH完成签到 ,获得积分10
3秒前
科研小白完成签到,获得积分10
3秒前
7秒前
妖风发布了新的文献求助30
8秒前
小蒋完成签到 ,获得积分10
11秒前
山羊穿毛衣完成签到,获得积分0
11秒前
CodeCraft应助欧欧欧导采纳,获得10
13秒前
lucky完成签到 ,获得积分10
13秒前
何浏亮完成签到,获得积分10
14秒前
逍遥自在完成签到,获得积分10
14秒前
李白完成签到,获得积分10
14秒前
ty发布了新的文献求助10
16秒前
kyle完成签到 ,获得积分10
16秒前
哭泣青烟完成签到 ,获得积分10
19秒前
xiekunwhy完成签到,获得积分10
19秒前
甜蜜的白桃完成签到 ,获得积分10
20秒前
科研通AI2S应助圆圆懒羊羊采纳,获得10
22秒前
JamesPei应助橙子加油采纳,获得10
24秒前
25秒前
25秒前
靓丽的明辉完成签到,获得积分10
25秒前
叛逆黑洞完成签到 ,获得积分10
26秒前
tree完成签到,获得积分10
26秒前
xiaoguai完成签到 ,获得积分10
29秒前
29秒前
悦耳冬萱完成签到 ,获得积分10
29秒前
红花铁牛发布了新的文献求助10
30秒前
飞翔的梦完成签到,获得积分10
31秒前
阳光的道消完成签到,获得积分10
31秒前
32秒前
32秒前
cheng完成签到,获得积分10
32秒前
zyy完成签到 ,获得积分10
32秒前
Temperature关注了科研通微信公众号
35秒前
11发布了新的文献求助10
35秒前
隐形的书瑶完成签到 ,获得积分10
36秒前
vivre223完成签到,获得积分10
36秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
Immigrant Incorporation in East Asian Democracies 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3965831
求助须知:如何正确求助?哪些是违规求助? 3511154
关于积分的说明 11156535
捐赠科研通 3245761
什么是DOI,文献DOI怎么找? 1793118
邀请新用户注册赠送积分活动 874230
科研通“疑难数据库(出版商)”最低求助积分说明 804268