Contracting, Pricing, and Data Collection Under the AI Flywheel Effect

杠杆(统计) 利润(经济学) 激励 数据收集 计算机科学 微观经济学 道德风险 瓶颈 外部性 产品(数学) 经济 运营管理 人工智能 几何学 数学 统计
作者
Hüseyin Gürkan,Francis de Véricourt
出处
期刊:Management Science [Institute for Operations Research and the Management Sciences]
卷期号:68 (12): 8791-8808 被引量:15
标识
DOI:10.1287/mnsc.2022.4333
摘要

This paper explores how firms that lack expertise in machine learning (ML) can leverage the so-called AI Flywheel effect. This effect designates a virtuous cycle by which as an ML product is adopted and new user data are fed back to the algorithm, the product improves, enabling further adoptions. However, managing this feedback loop is difficult, especially when the algorithm is contracted out. Indeed, the additional data that the AI Flywheel effect generates may change the provider’s incentives to improve the algorithm over time. We formalize this problem in a simple two-period moral hazard framework that captures the main dynamics among ML, data acquisition, pricing, and contracting. We find that the firm’s decisions crucially depend on how the amount of data on which the machine is trained interacts with the provider’s effort. If this effort has a more (less) significant impact on accuracy for larger volumes of data, the firm underprices (overprices) the product. Interestingly, these distortions sometimes improve social welfare, which accounts for the customer surplus and profits of both the firm and provider. Further, the interaction between incentive issues and the positive externalities of the AI Flywheel effect has important implications for the firm’s data collection strategy. In particular, the firm can boost its profit by increasing the product’s capacity to acquire usage data only up to a certain level. If the product collects too much data per user, the firm’s profit may actually decrease (i.e., more data are not necessarily better). This paper was accepted by Jayashankar Swaminathan, operations management. Supplemental Material: The data files and e-companion are available at https://doi.org/10.1287/mnsc.2022.4333 .
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
善学以致用应助可咳咳咳采纳,获得10
2秒前
博雅雅雅雅雅完成签到,获得积分10
2秒前
定雨寒发布了新的文献求助10
3秒前
3秒前
3秒前
Jade发布了新的文献求助10
4秒前
昕想事成发布了新的文献求助10
4秒前
七因完成签到,获得积分10
5秒前
6秒前
派小星完成签到 ,获得积分10
8秒前
李紫硕发布了新的文献求助10
8秒前
稀奇完成签到,获得积分20
8秒前
能干断缘发布了新的文献求助10
8秒前
Leslie发布了新的文献求助10
9秒前
9秒前
10秒前
10秒前
10秒前
七因发布了新的文献求助30
11秒前
科研通AI2S应助Fan采纳,获得10
11秒前
11秒前
hyyy完成签到 ,获得积分10
11秒前
12秒前
派小星关注了科研通微信公众号
13秒前
13秒前
南宫初兰发布了新的文献求助10
14秒前
科研通AI2S应助Flash采纳,获得10
14秒前
14秒前
Andy1409发布了新的文献求助10
14秒前
14秒前
15秒前
pasdzxcfvgb发布了新的文献求助10
15秒前
15秒前
16秒前
深情安青应助科研小白兔采纳,获得10
16秒前
平淡夏云完成签到,获得积分10
16秒前
丘比特应助松本润不足采纳,获得10
17秒前
巫马尔槐发布了新的文献求助10
17秒前
科研通AI2S应助山山而川采纳,获得10
17秒前
高分求助中
Evolution 10000
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
Diagnostic immunohistochemistry : theranostic and genomic applications 6th Edition 500
Chen Hansheng: China’s Last Romantic Revolutionary 500
China's Relations With Japan 1945-83: The Role of Liao Chengzhi 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3149112
求助须知:如何正确求助?哪些是违规求助? 2800154
关于积分的说明 7838819
捐赠科研通 2457690
什么是DOI,文献DOI怎么找? 1307972
科研通“疑难数据库(出版商)”最低求助积分说明 628363
版权声明 601706