Contracting, Pricing, and Data Collection Under the AI Flywheel Effect

杠杆(统计) 利润(经济学) 激励 数据收集 计算机科学 微观经济学 道德风险 瓶颈 外部性 产品(数学) 经济 运营管理 人工智能 统计 几何学 数学
作者
Hüseyin Gürkan,Francis de Véricourt
出处
期刊:Management Science [Institute for Operations Research and the Management Sciences]
卷期号:68 (12): 8791-8808 被引量:39
标识
DOI:10.1287/mnsc.2022.4333
摘要

This paper explores how firms that lack expertise in machine learning (ML) can leverage the so-called AI Flywheel effect. This effect designates a virtuous cycle by which as an ML product is adopted and new user data are fed back to the algorithm, the product improves, enabling further adoptions. However, managing this feedback loop is difficult, especially when the algorithm is contracted out. Indeed, the additional data that the AI Flywheel effect generates may change the provider’s incentives to improve the algorithm over time. We formalize this problem in a simple two-period moral hazard framework that captures the main dynamics among ML, data acquisition, pricing, and contracting. We find that the firm’s decisions crucially depend on how the amount of data on which the machine is trained interacts with the provider’s effort. If this effort has a more (less) significant impact on accuracy for larger volumes of data, the firm underprices (overprices) the product. Interestingly, these distortions sometimes improve social welfare, which accounts for the customer surplus and profits of both the firm and provider. Further, the interaction between incentive issues and the positive externalities of the AI Flywheel effect has important implications for the firm’s data collection strategy. In particular, the firm can boost its profit by increasing the product’s capacity to acquire usage data only up to a certain level. If the product collects too much data per user, the firm’s profit may actually decrease (i.e., more data are not necessarily better). This paper was accepted by Jayashankar Swaminathan, operations management. Supplemental Material: The data files and e-companion are available at https://doi.org/10.1287/mnsc.2022.4333 .
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科研的豪哥完成签到 ,获得积分10
1秒前
独立江湖女完成签到 ,获得积分10
2秒前
小小阿杰完成签到,获得积分10
3秒前
潘越发布了新的文献求助10
3秒前
3秒前
专注灵凡完成签到,获得积分10
4秒前
七子完成签到,获得积分10
6秒前
6秒前
zzx396完成签到,获得积分0
7秒前
10秒前
研友_VZG7GZ应助科研通管家采纳,获得10
10秒前
大个应助科研通管家采纳,获得10
10秒前
CR7应助科研通管家采纳,获得10
10秒前
10秒前
Ale发布了新的文献求助10
11秒前
汉堡包应助科研通管家采纳,获得10
11秒前
NexusExplorer应助科研通管家采纳,获得10
11秒前
KJ应助科研通管家采纳,获得10
11秒前
Muhi完成签到,获得积分10
11秒前
墨痕mohen完成签到,获得积分10
11秒前
gyl完成签到 ,获得积分10
12秒前
小伊发布了新的文献求助10
16秒前
高高的丹雪完成签到 ,获得积分10
18秒前
刘丰铭完成签到,获得积分10
18秒前
俭朴的世界完成签到 ,获得积分10
21秒前
清秋1001完成签到 ,获得积分10
22秒前
25秒前
鲤鱼听荷完成签到 ,获得积分10
27秒前
tfr06完成签到,获得积分10
27秒前
当女遇到乔完成签到 ,获得积分10
28秒前
Wxj246801发布了新的文献求助10
28秒前
36秒前
佳言2009完成签到,获得积分10
37秒前
大气的尔蓝完成签到,获得积分10
38秒前
陈花蕾完成签到 ,获得积分10
38秒前
端庄断秋完成签到,获得积分10
40秒前
末123456完成签到,获得积分10
40秒前
cccxxx完成签到,获得积分10
40秒前
Fuckacdemic完成签到,获得积分10
40秒前
MZ完成签到,获得积分10
40秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] 3000
Determination of the boron concentration in diamond using optical spectroscopy 600
The Netter Collection of Medical Illustrations: Digestive System, Volume 9, Part III - Liver, Biliary Tract, and Pancreas (3rd Edition) 600
台灣螢火蟲 500
Founding Fathers The Shaping of America 500
A new house rat (Mammalia: Rodentia: Muridae) from the Andaman and Nicobar Islands 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4542526
求助须知:如何正确求助?哪些是违规求助? 3975639
关于积分的说明 12311913
捐赠科研通 3643329
什么是DOI,文献DOI怎么找? 2006459
邀请新用户注册赠送积分活动 1041802
科研通“疑难数据库(出版商)”最低求助积分说明 930944