Do we really understand how drug eluted from stents modulates arterial healing?

紫杉醇 药品 支架 生物医学工程 药物开发 细胞生长 医学 药理学 外科 化学 内科学 癌症 生物化学
作者
Alistair McQueen,Javier Escuer,Ankush Aggarwal,Simon Kennedy,Christopher McCormick,Keith G. Oldroyd,Sean McGinty
出处
期刊:International Journal of Pharmaceutics [Elsevier BV]
卷期号:601: 120575-120575 被引量:8
标识
DOI:10.1016/j.ijpharm.2021.120575
摘要

The advent of drug-eluting stents (DES) has revolutionised the treatment of coronary artery disease. These devices, coated with anti-proliferative drugs, are deployed into stenosed or occluded vessels, compressing the plaque to restore natural blood flow, whilst simultaneously combating the evolution of restenotic tissue. Since the development of the first stent, extensive research has investigated how further advancements in stent technology can improve patient outcome. Mathematical and computational modelling has featured heavily, with models focussing on structural mechanics, computational fluid dynamics, drug elution kinetics and subsequent binding within the arterial wall; often considered separately. Smooth Muscle Cell (SMC) proliferation and neointimal growth are key features of the healing process following stent deployment. However, models which depict the action of drug on these processes are lacking. In this article, we start by reviewing current models of cell growth, which predominantly emanate from cancer research, and available published data on SMC proliferation, before presenting a series of mathematical models of varying complexity to detail the action of drug on SMC growth in vitro. Our results highlight that, at least for Sodium Salicylate and Paclitaxel, the current state-of-the-art nonlinear saturable binding model is incapable of capturing the proliferative response of SMCs across a range of drug doses and exposure times. Our findings potentially have important implications on the interpretation of current computational models and their future use to optimise and control drug release from DES and drug-coated balloons.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
2秒前
两块应助啊九lili采纳,获得10
2秒前
薄荷小新完成签到 ,获得积分0
4秒前
伶俐紫发布了新的文献求助10
4秒前
是阮软不是懒懒完成签到 ,获得积分10
5秒前
杰2580发布了新的文献求助10
7秒前
李木禾完成签到 ,获得积分10
7秒前
大气夜山完成签到 ,获得积分10
7秒前
魔山西红柿完成签到,获得积分10
8秒前
没有名字完成签到 ,获得积分10
14秒前
青黛完成签到 ,获得积分10
14秒前
Dank1ng完成签到,获得积分10
15秒前
杰2580完成签到,获得积分10
16秒前
大宝剑2号完成签到 ,获得积分10
17秒前
能干妙竹完成签到,获得积分10
18秒前
小珂完成签到,获得积分10
21秒前
皮皮虾完成签到 ,获得积分10
23秒前
24秒前
不能吃太饱完成签到 ,获得积分10
26秒前
buqi发布了新的文献求助10
27秒前
伶俐紫完成签到,获得积分10
28秒前
28秒前
29秒前
Annie发布了新的文献求助20
29秒前
二队淼队长完成签到,获得积分10
30秒前
我是老大应助清沧炽魂采纳,获得10
30秒前
彳亍宣完成签到 ,获得积分10
31秒前
缥缈的闭月完成签到,获得积分10
34秒前
buqi完成签到,获得积分10
34秒前
孔wj完成签到,获得积分10
35秒前
縤雨完成签到 ,获得积分10
35秒前
35秒前
Tao完成签到,获得积分10
40秒前
40秒前
黄景滨完成签到 ,获得积分10
41秒前
42秒前
wwrjj完成签到,获得积分10
43秒前
liu完成签到,获得积分10
43秒前
孤独听雨的猫完成签到 ,获得积分10
45秒前
高分求助中
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
哈工大泛函分析教案课件、“72小时速成泛函分析:从入门到入土.PDF”等 660
Comparing natural with chemical additive production 500
The Leucovorin Guide for Parents: Understanding Autism’s Folate 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.) 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5212499
求助须知:如何正确求助?哪些是违规求助? 4388659
关于积分的说明 13664251
捐赠科研通 4249165
什么是DOI,文献DOI怎么找? 2331448
邀请新用户注册赠送积分活动 1329148
关于科研通互助平台的介绍 1282561