Do we really understand how drug eluted from stents modulates arterial healing?

紫杉醇 药品 支架 生物医学工程 药物开发 细胞生长 医学 药理学 外科 化学 内科学 癌症 生物化学
作者
Alistair McQueen,Javier Escuer,Ankush Aggarwal,Simon Kennedy,Christopher McCormick,Keith G. Oldroyd,Sean McGinty
出处
期刊:International Journal of Pharmaceutics [Elsevier]
卷期号:601: 120575-120575 被引量:8
标识
DOI:10.1016/j.ijpharm.2021.120575
摘要

The advent of drug-eluting stents (DES) has revolutionised the treatment of coronary artery disease. These devices, coated with anti-proliferative drugs, are deployed into stenosed or occluded vessels, compressing the plaque to restore natural blood flow, whilst simultaneously combating the evolution of restenotic tissue. Since the development of the first stent, extensive research has investigated how further advancements in stent technology can improve patient outcome. Mathematical and computational modelling has featured heavily, with models focussing on structural mechanics, computational fluid dynamics, drug elution kinetics and subsequent binding within the arterial wall; often considered separately. Smooth Muscle Cell (SMC) proliferation and neointimal growth are key features of the healing process following stent deployment. However, models which depict the action of drug on these processes are lacking. In this article, we start by reviewing current models of cell growth, which predominantly emanate from cancer research, and available published data on SMC proliferation, before presenting a series of mathematical models of varying complexity to detail the action of drug on SMC growth in vitro. Our results highlight that, at least for Sodium Salicylate and Paclitaxel, the current state-of-the-art nonlinear saturable binding model is incapable of capturing the proliferative response of SMCs across a range of drug doses and exposure times. Our findings potentially have important implications on the interpretation of current computational models and their future use to optimise and control drug release from DES and drug-coated balloons.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
桐桐应助Yoke采纳,获得50
刚刚
李爱国应助夏语采纳,获得10
刚刚
与月同行完成签到,获得积分10
刚刚
橙子是不是完成签到,获得积分10
刚刚
自然的哈密瓜完成签到,获得积分10
刚刚
巧克力完成签到 ,获得积分10
2秒前
2秒前
2秒前
DOUBLE完成签到,获得积分10
2秒前
令狐从霜完成签到,获得积分10
3秒前
mushen完成签到,获得积分10
3秒前
科研螺丝完成签到 ,获得积分10
3秒前
明天又是美好的一天完成签到 ,获得积分10
3秒前
4秒前
4秒前
404发布了新的文献求助10
5秒前
asd发布了新的文献求助10
5秒前
lxt完成签到,获得积分10
5秒前
5秒前
子春完成签到 ,获得积分10
7秒前
大胆的忆寒完成签到,获得积分10
7秒前
xin发布了新的文献求助10
8秒前
雯子发布了新的文献求助10
8秒前
9秒前
9秒前
找文献的天才狗完成签到,获得积分10
9秒前
DHY发布了新的文献求助10
9秒前
田田田田完成签到,获得积分10
9秒前
许安华发布了新的文献求助10
10秒前
王者归来发布了新的文献求助10
10秒前
白玫瑰完成签到,获得积分10
11秒前
Billy应助Lllll采纳,获得30
12秒前
义气的一德完成签到,获得积分10
13秒前
towanda完成签到,获得积分10
13秒前
卯一完成签到 ,获得积分10
13秒前
13秒前
burninhell完成签到,获得积分10
14秒前
ddsgsd完成签到,获得积分10
14秒前
14秒前
16秒前
高分求助中
The late Devonian Standard Conodont Zonation 2000
Nickel superalloy market size, share, growth, trends, and forecast 2023-2030 2000
The Lali Section: An Excellent Reference Section for Upper - Devonian in South China 1500
Smart but Scattered: The Revolutionary Executive Skills Approach to Helping Kids Reach Their Potential (第二版) 1000
Very-high-order BVD Schemes Using β-variable THINC Method 870
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 800
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 800
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3253246
求助须知:如何正确求助?哪些是违规求助? 2895752
关于积分的说明 8287872
捐赠科研通 2564639
什么是DOI,文献DOI怎么找? 1392493
科研通“疑难数据库(出版商)”最低求助积分说明 652220
邀请新用户注册赠送积分活动 629433