Do we really understand how drug eluted from stents modulates arterial healing?

紫杉醇 药品 支架 生物医学工程 药物开发 细胞生长 医学 药理学 外科 化学 内科学 癌症 生物化学
作者
Alistair McQueen,Javier Escuer,Ankush Aggarwal,Simon Kennedy,Christopher McCormick,Keith G. Oldroyd,Sean McGinty
出处
期刊:International Journal of Pharmaceutics [Elsevier]
卷期号:601: 120575-120575 被引量:8
标识
DOI:10.1016/j.ijpharm.2021.120575
摘要

The advent of drug-eluting stents (DES) has revolutionised the treatment of coronary artery disease. These devices, coated with anti-proliferative drugs, are deployed into stenosed or occluded vessels, compressing the plaque to restore natural blood flow, whilst simultaneously combating the evolution of restenotic tissue. Since the development of the first stent, extensive research has investigated how further advancements in stent technology can improve patient outcome. Mathematical and computational modelling has featured heavily, with models focussing on structural mechanics, computational fluid dynamics, drug elution kinetics and subsequent binding within the arterial wall; often considered separately. Smooth Muscle Cell (SMC) proliferation and neointimal growth are key features of the healing process following stent deployment. However, models which depict the action of drug on these processes are lacking. In this article, we start by reviewing current models of cell growth, which predominantly emanate from cancer research, and available published data on SMC proliferation, before presenting a series of mathematical models of varying complexity to detail the action of drug on SMC growth in vitro. Our results highlight that, at least for Sodium Salicylate and Paclitaxel, the current state-of-the-art nonlinear saturable binding model is incapable of capturing the proliferative response of SMCs across a range of drug doses and exposure times. Our findings potentially have important implications on the interpretation of current computational models and their future use to optimise and control drug release from DES and drug-coated balloons.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
耶比环肽完成签到,获得积分10
1秒前
大个应助sssshhh采纳,获得10
2秒前
6秒前
大方冬寒发布了新的文献求助10
9秒前
hug完成签到,获得积分0
12秒前
阿尉完成签到 ,获得积分10
15秒前
小蘑菇应助linlin采纳,获得10
15秒前
向阳花完成签到 ,获得积分10
17秒前
TiY完成签到 ,获得积分10
19秒前
20秒前
思源应助闪闪航空采纳,获得10
22秒前
NEW完成签到,获得积分10
22秒前
23秒前
清脆乐曲发布了新的文献求助10
24秒前
夜草完成签到,获得积分10
24秒前
sssshhh发布了新的文献求助10
26秒前
27秒前
orixero应助谨慎的擎宇采纳,获得10
27秒前
28秒前
28秒前
上官若男应助Wqian采纳,获得10
28秒前
闪闪航空发布了新的文献求助10
33秒前
linlin发布了新的文献求助10
34秒前
HB发布了新的文献求助10
34秒前
清脆乐曲完成签到,获得积分10
35秒前
felix发布了新的文献求助10
36秒前
科研通AI6应助sssshhh采纳,获得10
37秒前
lucygaga完成签到 ,获得积分10
39秒前
40秒前
40秒前
科研通AI6应助Xjx6519采纳,获得20
40秒前
魔幻冰棍发布了新的文献求助10
42秒前
BowieHuang应助白白采纳,获得10
42秒前
mirrovo完成签到 ,获得积分10
42秒前
自然的平蓝完成签到,获得积分10
44秒前
深情安青应助科研通管家采纳,获得10
46秒前
科研通AI6应助科研通管家采纳,获得10
46秒前
Linos应助科研通管家采纳,获得10
46秒前
蓝天应助科研通管家采纳,获得10
46秒前
情怀应助科研通管家采纳,获得10
46秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1601
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 800
Biology of the Reptilia. Volume 21. Morphology I. The Skull and Appendicular Locomotor Apparatus of Lepidosauria 620
A Guide to Genetic Counseling, 3rd Edition 500
Laryngeal Mask Anesthesia: Principles and Practice. 2nd ed 500
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5557938
求助须知:如何正确求助?哪些是违规求助? 4642910
关于积分的说明 14669614
捐赠科研通 4584414
什么是DOI,文献DOI怎么找? 2514801
邀请新用户注册赠送积分活动 1488970
关于科研通互助平台的介绍 1459614