Do we really understand how drug eluted from stents modulates arterial healing?

紫杉醇 药品 支架 生物医学工程 药物开发 细胞生长 医学 药理学 外科 化学 内科学 癌症 生物化学
作者
Alistair McQueen,Javier Escuer,Ankush Aggarwal,Simon Kennedy,Christopher McCormick,Keith G. Oldroyd,Sean McGinty
出处
期刊:International Journal of Pharmaceutics [Elsevier BV]
卷期号:601: 120575-120575 被引量:8
标识
DOI:10.1016/j.ijpharm.2021.120575
摘要

The advent of drug-eluting stents (DES) has revolutionised the treatment of coronary artery disease. These devices, coated with anti-proliferative drugs, are deployed into stenosed or occluded vessels, compressing the plaque to restore natural blood flow, whilst simultaneously combating the evolution of restenotic tissue. Since the development of the first stent, extensive research has investigated how further advancements in stent technology can improve patient outcome. Mathematical and computational modelling has featured heavily, with models focussing on structural mechanics, computational fluid dynamics, drug elution kinetics and subsequent binding within the arterial wall; often considered separately. Smooth Muscle Cell (SMC) proliferation and neointimal growth are key features of the healing process following stent deployment. However, models which depict the action of drug on these processes are lacking. In this article, we start by reviewing current models of cell growth, which predominantly emanate from cancer research, and available published data on SMC proliferation, before presenting a series of mathematical models of varying complexity to detail the action of drug on SMC growth in vitro. Our results highlight that, at least for Sodium Salicylate and Paclitaxel, the current state-of-the-art nonlinear saturable binding model is incapable of capturing the proliferative response of SMCs across a range of drug doses and exposure times. Our findings potentially have important implications on the interpretation of current computational models and their future use to optimise and control drug release from DES and drug-coated balloons.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
oh应助知性的雅彤采纳,获得10
1秒前
1秒前
orixero应助zhudaxia采纳,获得10
1秒前
Binbin发布了新的文献求助10
2秒前
苹果书文完成签到 ,获得积分10
2秒前
2秒前
2秒前
4秒前
哆啦小鱼完成签到,获得积分10
5秒前
Hello应助骤雨时晴采纳,获得10
5秒前
黄油曲奇Nana完成签到,获得积分10
6秒前
pcx发布了新的文献求助10
7秒前
8秒前
白色风车完成签到,获得积分10
8秒前
Bili发布了新的文献求助10
8秒前
8秒前
9秒前
百里丹珍完成签到,获得积分10
9秒前
110o发布了新的文献求助10
9秒前
13秒前
14秒前
14秒前
Lucas应助Bili采纳,获得10
15秒前
汪汪队立大功完成签到,获得积分10
15秒前
今后应助zzznznnn采纳,获得10
16秒前
Sweet关注了科研通微信公众号
16秒前
在水一方应助Binbin采纳,获得10
16秒前
马兵完成签到,获得积分20
16秒前
17秒前
17秒前
Rondab应助海的呼唤采纳,获得10
17秒前
17秒前
17秒前
周凡淇发布了新的文献求助10
17秒前
18秒前
18秒前
小巧亦竹完成签到,获得积分10
18秒前
Foch发布了新的文献求助10
19秒前
骤雨时晴发布了新的文献求助10
19秒前
19秒前
高分求助中
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
A new approach to the extrapolation of accelerated life test data 1000
Problems of point-blast theory 400
北师大毕业论文 基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 390
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
Novel Preparation of Chitin Nanocrystals by H2SO4 and H3PO4 Hydrolysis Followed by High-Pressure Water Jet Treatments 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3998688
求助须知:如何正确求助?哪些是违规求助? 3538149
关于积分的说明 11273517
捐赠科研通 3277099
什么是DOI,文献DOI怎么找? 1807405
邀请新用户注册赠送积分活动 883855
科研通“疑难数据库(出版商)”最低求助积分说明 810070