已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Myocardial Pathology Segmentation of Multi-modal Cardiac MR Images with a Simple but Efficient Siamese U-shaped Network

分割 计算机科学 模态(人机交互) 人工智能 模式识别(心理学) 疤痕 杠杆(统计) 情态动词 医学 病理 化学 高分子化学
作者
Weisheng Li,Linhong Wang,Feiyan Li,Shengfeng Qin,Bin Xiao
出处
期刊:Biomedical Signal Processing and Control [Elsevier]
卷期号:71: 103174-103174 被引量:11
标识
DOI:10.1016/j.bspc.2021.103174
摘要

Segmentation of multi-modal myocardial pathology images is a challenging task, due to factors such as the heterogeneity caused by large inter-modality and intra-modality intensity variations in multi-modal images, and the diversity of location, shape, and scale of lesion regions. Existing methods based on multi-modal segmentation cannot effectively integrate and utilize complementary information between multiple modalities, leading to the difficulty in segmenting edema and discontinuous scars. In this paper, we propose a simple but efficient U-shaped network, named Siamese U-Net, to solve these problems. There are two aspects to our method. First, we adopt a multi-modal complementary information exploration network (MCIE-Net) to explore the correlations across multi-modal images and simultaneously segment cardiac structures and myocardial pathology. This method is able to fully leverage complementary information between different modalities. Second, to obtain accurate and continuous segmentation of edema and scars, we use a lesion refinement network (LR-Net) with the same architecture as the MCIE-Net, which extracts lesion features to enhance the fusion of lesion information. We conducted extensive experiments on the MyoPS 2020 and MS-CMRSeg 2019 datasets to demonstrate the effectiveness of our proposed approach. We obtained an average Dice score of 0.734 ± 0.088 for the myocardial edema + scars on the MyoPS 2020 test set, a result which outperformed the state-of-the-art method. These results are a 0.9% improvement over the segmentation results of our previous work, and exceed the results of the winner of the MyoPS 2020 challenge by 0.3%.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
蜡笔小屁发布了新的文献求助50
刚刚
orixero应助无情的宛儿采纳,获得10
1秒前
星星子发布了新的文献求助10
2秒前
康康发布了新的文献求助10
4秒前
4秒前
今后应助kls采纳,获得10
4秒前
慕青应助lwq采纳,获得10
8秒前
8秒前
8秒前
一亿发布了新的文献求助10
8秒前
传奇3应助科研通管家采纳,获得20
8秒前
Mac发布了新的文献求助10
10秒前
hyl-tcm完成签到,获得积分10
11秒前
wld_gs完成签到,获得积分10
13秒前
14秒前
Akim应助11采纳,获得10
14秒前
科研通AI2S应助wjq2430采纳,获得30
16秒前
小小的梦想完成签到,获得积分10
17秒前
dong完成签到,获得积分10
18秒前
小马甲应助忧郁的白亦采纳,获得10
18秒前
1111完成签到,获得积分10
19秒前
默默的水桃完成签到,获得积分10
20秒前
Going发布了新的文献求助10
21秒前
成就映秋完成签到,获得积分10
21秒前
111完成签到,获得积分10
24秒前
24秒前
24秒前
25秒前
科研通AI2S应助zhou采纳,获得10
27秒前
kls发布了新的文献求助10
29秒前
香蕉觅云应助小了白了兔采纳,获得10
29秒前
璿_发布了新的文献求助10
30秒前
31秒前
31秒前
32秒前
Going完成签到,获得积分10
32秒前
zhou完成签到,获得积分10
33秒前
34秒前
难摧发布了新的文献求助10
35秒前
mito发布了新的文献求助10
35秒前
高分求助中
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Chen Hansheng: China’s Last Romantic Revolutionary 500
宽禁带半导体紫外光电探测器 388
COSMETIC DERMATOLOGY & SKINCARE PRACTICE 388
Pearson Edxecel IGCSE English Language B 300
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3142306
求助须知:如何正确求助?哪些是违规求助? 2793200
关于积分的说明 7805956
捐赠科研通 2449516
什么是DOI,文献DOI怎么找? 1303345
科研通“疑难数据库(出版商)”最低求助积分说明 626823
版权声明 601300