清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

Myocardial Pathology Segmentation of Multi-modal Cardiac MR Images with a Simple but Efficient Siamese U-shaped Network

分割 计算机科学 模态(人机交互) 人工智能 模式识别(心理学) 疤痕 杠杆(统计) 情态动词 医学 病理 化学 高分子化学
作者
Weisheng Li,Linhong Wang,Feiyan Li,Shengfeng Qin,Bin Xiao
出处
期刊:Biomedical Signal Processing and Control [Elsevier]
卷期号:71: 103174-103174 被引量:11
标识
DOI:10.1016/j.bspc.2021.103174
摘要

Segmentation of multi-modal myocardial pathology images is a challenging task, due to factors such as the heterogeneity caused by large inter-modality and intra-modality intensity variations in multi-modal images, and the diversity of location, shape, and scale of lesion regions. Existing methods based on multi-modal segmentation cannot effectively integrate and utilize complementary information between multiple modalities, leading to the difficulty in segmenting edema and discontinuous scars. In this paper, we propose a simple but efficient U-shaped network, named Siamese U-Net, to solve these problems. There are two aspects to our method. First, we adopt a multi-modal complementary information exploration network (MCIE-Net) to explore the correlations across multi-modal images and simultaneously segment cardiac structures and myocardial pathology. This method is able to fully leverage complementary information between different modalities. Second, to obtain accurate and continuous segmentation of edema and scars, we use a lesion refinement network (LR-Net) with the same architecture as the MCIE-Net, which extracts lesion features to enhance the fusion of lesion information. We conducted extensive experiments on the MyoPS 2020 and MS-CMRSeg 2019 datasets to demonstrate the effectiveness of our proposed approach. We obtained an average Dice score of 0.734 ± 0.088 for the myocardial edema + scars on the MyoPS 2020 test set, a result which outperformed the state-of-the-art method. These results are a 0.9% improvement over the segmentation results of our previous work, and exceed the results of the winner of the MyoPS 2020 challenge by 0.3%.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
拙青完成签到,获得积分10
13秒前
34秒前
Criminology34应助科研通管家采纳,获得20
40秒前
计划完成签到,获得积分10
52秒前
1分钟前
dd发布了新的文献求助10
1分钟前
1分钟前
yf发布了新的文献求助10
1分钟前
两个榴莲完成签到,获得积分0
1分钟前
怕孤独的迎波关注了科研通微信公众号
1分钟前
1分钟前
华仔应助怕孤独的迎波采纳,获得20
1分钟前
Double发布了新的文献求助150
2分钟前
上好佳完成签到,获得积分10
2分钟前
朴素鑫完成签到,获得积分10
3分钟前
炫潮浪子完成签到,获得积分10
3分钟前
wrl2023完成签到,获得积分10
3分钟前
灿烂而孤独的八戒完成签到 ,获得积分0
4分钟前
怕孤独的迎波完成签到,获得积分10
5分钟前
5分钟前
激动的似狮完成签到,获得积分10
5分钟前
5分钟前
adkdad完成签到 ,获得积分10
5分钟前
tt完成签到,获得积分10
5分钟前
Yini应助非洲大象采纳,获得50
5分钟前
6分钟前
玛卡巴卡爱吃饭完成签到 ,获得积分10
6分钟前
ax发布了新的文献求助30
6分钟前
CHEN完成签到 ,获得积分10
6分钟前
ljm完成签到 ,获得积分10
6分钟前
没时间解释了完成签到 ,获得积分10
7分钟前
研友_Lw4Ngn发布了新的文献求助10
7分钟前
研友_Lw4Ngn完成签到,获得积分10
7分钟前
happyxuexi完成签到,获得积分10
7分钟前
点点完成签到 ,获得积分10
7分钟前
8分钟前
8分钟前
8分钟前
今后应助科研通管家采纳,获得10
8分钟前
大个应助科研通管家采纳,获得80
8分钟前
高分求助中
Encyclopedia of Quaternary Science Third edition 2025 12000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Constitutional and Administrative Law 1000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.). Frederic G. Reamer 800
Holistic Discourse Analysis 600
Vertebrate Palaeontology, 5th Edition 530
Comparison of spinal anesthesia and general anesthesia in total hip and total knee arthroplasty: a meta-analysis and systematic review 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5346870
求助须知:如何正确求助?哪些是违规求助? 4481246
关于积分的说明 13947502
捐赠科研通 4379278
什么是DOI,文献DOI怎么找? 2406270
邀请新用户注册赠送积分活动 1398843
关于科研通互助平台的介绍 1371742