Myocardial Pathology Segmentation of Multi-modal Cardiac MR Images with a Simple but Efficient Siamese U-shaped Network

分割 计算机科学 模态(人机交互) 人工智能 模式识别(心理学) 疤痕 杠杆(统计) 情态动词 医学 病理 化学 高分子化学
作者
Weisheng Li,Linhong Wang,Feiyan Li,Shengfeng Qin,Bin Xiao
出处
期刊:Biomedical Signal Processing and Control [Elsevier BV]
卷期号:71: 103174-103174 被引量:11
标识
DOI:10.1016/j.bspc.2021.103174
摘要

Segmentation of multi-modal myocardial pathology images is a challenging task, due to factors such as the heterogeneity caused by large inter-modality and intra-modality intensity variations in multi-modal images, and the diversity of location, shape, and scale of lesion regions. Existing methods based on multi-modal segmentation cannot effectively integrate and utilize complementary information between multiple modalities, leading to the difficulty in segmenting edema and discontinuous scars. In this paper, we propose a simple but efficient U-shaped network, named Siamese U-Net, to solve these problems. There are two aspects to our method. First, we adopt a multi-modal complementary information exploration network (MCIE-Net) to explore the correlations across multi-modal images and simultaneously segment cardiac structures and myocardial pathology. This method is able to fully leverage complementary information between different modalities. Second, to obtain accurate and continuous segmentation of edema and scars, we use a lesion refinement network (LR-Net) with the same architecture as the MCIE-Net, which extracts lesion features to enhance the fusion of lesion information. We conducted extensive experiments on the MyoPS 2020 and MS-CMRSeg 2019 datasets to demonstrate the effectiveness of our proposed approach. We obtained an average Dice score of 0.734 ± 0.088 for the myocardial edema + scars on the MyoPS 2020 test set, a result which outperformed the state-of-the-art method. These results are a 0.9% improvement over the segmentation results of our previous work, and exceed the results of the winner of the MyoPS 2020 challenge by 0.3%.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
AgAin发布了新的文献求助10
刚刚
寻找布冯发布了新的文献求助10
刚刚
qifeng完成签到,获得积分10
1秒前
4秒前
aaa完成签到,获得积分10
4秒前
郭志倩发布了新的文献求助10
5秒前
大个应助孙琪琪采纳,获得10
6秒前
Uu发布了新的文献求助60
8秒前
莲意峨眉峰完成签到,获得积分10
8秒前
9秒前
Criminology34应助hy1234采纳,获得10
9秒前
9秒前
喜宝完成签到 ,获得积分10
11秒前
sunhhhh完成签到 ,获得积分10
11秒前
南浔发布了新的文献求助10
12秒前
中岛悠斗发布了新的文献求助10
13秒前
luyi116发布了新的文献求助10
13秒前
14秒前
18秒前
Fury完成签到 ,获得积分10
18秒前
Zachary发布了新的文献求助10
18秒前
123456发布了新的文献求助10
19秒前
小米粥完成签到 ,获得积分10
19秒前
20秒前
20秒前
20秒前
Akim应助花卷采纳,获得10
21秒前
22秒前
22秒前
22秒前
lxw发布了新的文献求助20
22秒前
23秒前
善学以致用应助浮生如梦采纳,获得10
23秒前
23秒前
健壮的秋寒完成签到,获得积分10
23秒前
Zachary完成签到,获得积分10
24秒前
Linica发布了新的文献求助10
24秒前
科研通AI5应助风清扬采纳,获得10
24秒前
lindicaphxag发布了新的文献求助10
25秒前
li发布了新的文献求助10
26秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Zeolites: From Fundamentals to Emerging Applications 1500
Architectural Corrosion and Critical Infrastructure 1000
Early Devonian echinoderms from Victoria (Rhombifera, Blastoidea and Ophiocistioidea) 1000
Hidden Generalizations Phonological Opacity in Optimality Theory 1000
Comprehensive Computational Chemistry 2023 800
2026国自然单细胞多组学大红书申报宝典 800
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4911831
求助须知:如何正确求助?哪些是违规求助? 4187185
关于积分的说明 13003332
捐赠科研通 3955152
什么是DOI,文献DOI怎么找? 2168569
邀请新用户注册赠送积分活动 1187064
关于科研通互助平台的介绍 1094301