亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Myocardial Pathology Segmentation of Multi-modal Cardiac MR Images with a Simple but Efficient Siamese U-shaped Network

分割 计算机科学 模态(人机交互) 人工智能 模式识别(心理学) 疤痕 杠杆(统计) 情态动词 医学 病理 化学 高分子化学
作者
Weisheng Li,Linhong Wang,Feiyan Li,Shengfeng Qin,Bin Xiao
出处
期刊:Biomedical Signal Processing and Control [Elsevier BV]
卷期号:71: 103174-103174 被引量:11
标识
DOI:10.1016/j.bspc.2021.103174
摘要

Segmentation of multi-modal myocardial pathology images is a challenging task, due to factors such as the heterogeneity caused by large inter-modality and intra-modality intensity variations in multi-modal images, and the diversity of location, shape, and scale of lesion regions. Existing methods based on multi-modal segmentation cannot effectively integrate and utilize complementary information between multiple modalities, leading to the difficulty in segmenting edema and discontinuous scars. In this paper, we propose a simple but efficient U-shaped network, named Siamese U-Net, to solve these problems. There are two aspects to our method. First, we adopt a multi-modal complementary information exploration network (MCIE-Net) to explore the correlations across multi-modal images and simultaneously segment cardiac structures and myocardial pathology. This method is able to fully leverage complementary information between different modalities. Second, to obtain accurate and continuous segmentation of edema and scars, we use a lesion refinement network (LR-Net) with the same architecture as the MCIE-Net, which extracts lesion features to enhance the fusion of lesion information. We conducted extensive experiments on the MyoPS 2020 and MS-CMRSeg 2019 datasets to demonstrate the effectiveness of our proposed approach. We obtained an average Dice score of 0.734 ± 0.088 for the myocardial edema + scars on the MyoPS 2020 test set, a result which outperformed the state-of-the-art method. These results are a 0.9% improvement over the segmentation results of our previous work, and exceed the results of the winner of the MyoPS 2020 challenge by 0.3%.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
浮游应助Arjun采纳,获得10
刚刚
3秒前
5秒前
脑洞疼应助孤独的砖头采纳,获得10
6秒前
10秒前
Lucas应助多情的初蓝采纳,获得10
10秒前
11秒前
史巴兰完成签到,获得积分10
11秒前
NiNi发布了新的文献求助10
12秒前
16秒前
石龙子完成签到,获得积分10
17秒前
zhangshenrong完成签到 ,获得积分10
22秒前
慎二完成签到 ,获得积分10
26秒前
28秒前
彩虹儿应助儒雅的胡萝卜采纳,获得10
29秒前
31秒前
pearson应助科研通管家采纳,获得10
42秒前
浮游应助科研通管家采纳,获得10
42秒前
科研通AI2S应助科研通管家采纳,获得10
42秒前
浮游应助科研通管家采纳,获得10
42秒前
44秒前
44秒前
DS发布了新的文献求助10
47秒前
研友_ZA2Y68发布了新的文献求助20
47秒前
SciGPT应助科研牛油果采纳,获得10
50秒前
xiao完成签到,获得积分10
50秒前
笑点低完成签到 ,获得积分10
55秒前
刘涵完成签到 ,获得积分10
59秒前
1分钟前
scxl2000完成签到 ,获得积分10
1分钟前
隐形曼青应助多情的初蓝采纳,获得10
1分钟前
1分钟前
seven完成签到,获得积分10
1分钟前
1分钟前
1分钟前
1分钟前
1分钟前
刘兴完成签到,获得积分10
1分钟前
幂霓发布了新的文献求助10
1分钟前
1分钟前
高分求助中
Comprehensive Toxicology Fourth Edition 24000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
World Nuclear Fuel Report: Global Scenarios for Demand and Supply Availability 2025-2040 800
The Social Work Ethics Casebook(2nd,Frederic G. R) 600
Handbook of Social and Emotional Learning 500
HEAT TRANSFER EQUIPMENT DESIGN Advanced Study Institute Book 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5115839
求助须知:如何正确求助?哪些是违规求助? 4322725
关于积分的说明 13469362
捐赠科研通 4154799
什么是DOI,文献DOI怎么找? 2276769
邀请新用户注册赠送积分活动 1278620
关于科研通互助平台的介绍 1216616