亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Intelligent bearing fault diagnosis using swarm decomposition method and new hybrid particle swarm optimization algorithm

粒子群优化 算法 计算机科学 支持向量机 方位(导航) 振动 断层(地质) 特征选择 特征向量 模式识别(心理学) 人工智能 量子力学 物理 地质学 地震学
作者
Saeed Nezamivand Chegini,Pouriya Amini,Bahman Ahmadi,Ahmad Bagheri,Illia Amirmostofian
出处
期刊:Soft Computing [Springer Nature]
卷期号:26 (3): 1475-1497 被引量:20
标识
DOI:10.1007/s00500-021-06307-x
摘要

The quality of information extracted from the vibration signals, and the accuracy of the bearing status detection depend on the methods used to process the signal and select the informative features. In this paper, a new hybrid approach is introduced in which the relatively new swarm decomposition (SWD) method and the optimized compensation distance evaluation technique (OCDET) are used to enhance the signal processing stage and to improve the optimal features selection process, respectively. Firstly, the vibration signals are decomposed into their Oscillatory Components (OCs) using the SWD. The feature matrix is constructed by computing the time-domain features for the OCs. The CDET method is consequently utilized to select the most sensitive features corresponding to the bearing status. On the other hand, The CDET approach contains a parameter called threshold which affects the number of the selected features. In this way, the hybrid optimization algorithm, which is a combination of the Particle Swarm Optimization (PSO) algorithm with the Sine–Cosine Algorithm (SCA) and the Levy flight distribution, has been used to select the optimal CDET threshold and improve the support vector machine (SVM) classifier. The proposed technique ability is evaluated by vibration signals corresponding to different bearing defects and various speeds. The results indicate the capability of the proposed fault diagnosis method in identifying the very small-size defects under various bearing conditions. Finally, the presented method shows better performance in comparison with other well-known methods in the most of the case studies.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科研通AI6应助科研通管家采纳,获得30
刚刚
迷糊蛋完成签到,获得积分20
2秒前
可爱丹彤发布了新的文献求助30
5秒前
12秒前
SciGPT应助默默襄采纳,获得10
13秒前
15秒前
orixero应助雨之夏日采纳,获得10
16秒前
MiSD完成签到,获得积分10
20秒前
21秒前
一休完成签到,获得积分20
22秒前
科研通AI2S应助仁爱的狗采纳,获得10
22秒前
24秒前
上官若男应助名卡卡采纳,获得10
24秒前
27秒前
29秒前
一休发布了新的文献求助10
35秒前
雨之夏日发布了新的文献求助10
35秒前
36秒前
名卡卡发布了新的文献求助10
41秒前
飞快的奇异果完成签到 ,获得积分10
49秒前
甘草三七完成签到,获得积分10
53秒前
Kryptonite完成签到,获得积分10
59秒前
大麦完成签到 ,获得积分10
1分钟前
Kevin完成签到 ,获得积分10
1分钟前
浮游应助耶耶粘豆包采纳,获得10
1分钟前
1分钟前
5k全完成签到 ,获得积分10
1分钟前
1分钟前
1分钟前
1分钟前
HaCat应助科研通管家采纳,获得10
2分钟前
HaCat应助科研通管家采纳,获得10
2分钟前
嘻嘻哈哈应助科研通管家采纳,获得10
2分钟前
HaCat应助科研通管家采纳,获得10
2分钟前
HaCat应助科研通管家采纳,获得10
2分钟前
可爱丹彤发布了新的文献求助10
2分钟前
2分钟前
2分钟前
2分钟前
友好寻真发布了新的文献求助20
2分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Kolmogorov, A. N. Qualitative study of mathematical models of populations. Problems of Cybernetics, 1972, 25, 100-106 800
FUNDAMENTAL STUDY OF ADAPTIVE CONTROL SYSTEMS 500
微纳米加工技术及其应用 500
Nanoelectronics and Information Technology: Advanced Electronic Materials and Novel Devices 500
Performance optimization of advanced vapor compression systems working with low-GWP refrigerants using numerical and experimental methods 500
Constitutional and Administrative Law 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5302133
求助须知:如何正确求助?哪些是违规求助? 4449379
关于积分的说明 13848275
捐赠科研通 4335535
什么是DOI,文献DOI怎么找? 2380395
邀请新用户注册赠送积分活动 1375402
关于科研通互助平台的介绍 1341557