Intelligent bearing fault diagnosis using swarm decomposition method and new hybrid particle swarm optimization algorithm

粒子群优化 算法 计算机科学 支持向量机 方位(导航) 振动 断层(地质) 特征选择 特征向量 模式识别(心理学) 人工智能 量子力学 物理 地质学 地震学
作者
Saeed Nezamivand Chegini,Pouriya Amini,Bahman Ahmadi,Ahmad Bagheri,Illia Amirmostofian
出处
期刊:Soft Computing [Springer Nature]
卷期号:26 (3): 1475-1497 被引量:20
标识
DOI:10.1007/s00500-021-06307-x
摘要

The quality of information extracted from the vibration signals, and the accuracy of the bearing status detection depend on the methods used to process the signal and select the informative features. In this paper, a new hybrid approach is introduced in which the relatively new swarm decomposition (SWD) method and the optimized compensation distance evaluation technique (OCDET) are used to enhance the signal processing stage and to improve the optimal features selection process, respectively. Firstly, the vibration signals are decomposed into their Oscillatory Components (OCs) using the SWD. The feature matrix is constructed by computing the time-domain features for the OCs. The CDET method is consequently utilized to select the most sensitive features corresponding to the bearing status. On the other hand, The CDET approach contains a parameter called threshold which affects the number of the selected features. In this way, the hybrid optimization algorithm, which is a combination of the Particle Swarm Optimization (PSO) algorithm with the Sine–Cosine Algorithm (SCA) and the Levy flight distribution, has been used to select the optimal CDET threshold and improve the support vector machine (SVM) classifier. The proposed technique ability is evaluated by vibration signals corresponding to different bearing defects and various speeds. The results indicate the capability of the proposed fault diagnosis method in identifying the very small-size defects under various bearing conditions. Finally, the presented method shows better performance in comparison with other well-known methods in the most of the case studies.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Zhijiuz完成签到,获得积分10
1秒前
留白完成签到 ,获得积分10
1秒前
winwin完成签到,获得积分10
1秒前
呀呀呀完成签到,获得积分10
1秒前
大肉猪完成签到,获得积分10
2秒前
今日无事发布了新的文献求助10
2秒前
丰富的高山完成签到,获得积分10
2秒前
泡泡完成签到,获得积分10
3秒前
3秒前
你好完成签到,获得积分20
3秒前
3秒前
zy发布了新的文献求助10
3秒前
cenghao应助吭哧吭哧采纳,获得10
3秒前
jianguo完成签到,获得积分10
3秒前
薯条派发布了新的文献求助10
4秒前
einspringen完成签到,获得积分10
4秒前
华仔应助文静的铅笔采纳,获得10
4秒前
鱿鱼炒黄瓜完成签到,获得积分10
5秒前
李妍妍完成签到,获得积分10
5秒前
清脆的白开水完成签到,获得积分10
5秒前
Lau完成签到,获得积分10
5秒前
龙腾岁月发布了新的文献求助10
5秒前
xfyxxh完成签到,获得积分10
5秒前
He完成签到,获得积分10
6秒前
举个栗子8发布了新的文献求助10
6秒前
ef完成签到,获得积分10
6秒前
7秒前
三三完成签到,获得积分10
8秒前
shuyou完成签到 ,获得积分10
8秒前
紫色风铃完成签到,获得积分0
8秒前
1111发布了新的文献求助30
9秒前
万能图书馆应助Yzy采纳,获得10
9秒前
zy完成签到,获得积分10
9秒前
香氛完成签到,获得积分10
9秒前
无花果应助果果糖YLJ采纳,获得10
10秒前
李卓完成签到,获得积分10
10秒前
maomao完成签到,获得积分10
10秒前
chen完成签到,获得积分10
10秒前
11秒前
上官若男应助Gracywss采纳,获得20
11秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
Metagames: Games about Games 700
King Tyrant 680
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5573719
求助须知:如何正确求助?哪些是违规求助? 4659992
关于积分的说明 14727079
捐赠科研通 4599835
什么是DOI,文献DOI怎么找? 2524518
邀请新用户注册赠送积分活动 1494863
关于科研通互助平台的介绍 1464959