Intelligent bearing fault diagnosis using swarm decomposition method and new hybrid particle swarm optimization algorithm

粒子群优化 算法 计算机科学 支持向量机 方位(导航) 振动 断层(地质) 特征选择 特征向量 模式识别(心理学) 人工智能 量子力学 物理 地质学 地震学
作者
Saeed Nezamivand Chegini,Pouriya Amini,Bahman Ahmadi,Ahmad Bagheri,Illia Amirmostofian
出处
期刊:Soft Computing [Springer Nature]
卷期号:26 (3): 1475-1497 被引量:20
标识
DOI:10.1007/s00500-021-06307-x
摘要

The quality of information extracted from the vibration signals, and the accuracy of the bearing status detection depend on the methods used to process the signal and select the informative features. In this paper, a new hybrid approach is introduced in which the relatively new swarm decomposition (SWD) method and the optimized compensation distance evaluation technique (OCDET) are used to enhance the signal processing stage and to improve the optimal features selection process, respectively. Firstly, the vibration signals are decomposed into their Oscillatory Components (OCs) using the SWD. The feature matrix is constructed by computing the time-domain features for the OCs. The CDET method is consequently utilized to select the most sensitive features corresponding to the bearing status. On the other hand, The CDET approach contains a parameter called threshold which affects the number of the selected features. In this way, the hybrid optimization algorithm, which is a combination of the Particle Swarm Optimization (PSO) algorithm with the Sine–Cosine Algorithm (SCA) and the Levy flight distribution, has been used to select the optimal CDET threshold and improve the support vector machine (SVM) classifier. The proposed technique ability is evaluated by vibration signals corresponding to different bearing defects and various speeds. The results indicate the capability of the proposed fault diagnosis method in identifying the very small-size defects under various bearing conditions. Finally, the presented method shows better performance in comparison with other well-known methods in the most of the case studies.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
打打应助forgodssake采纳,获得10
2秒前
南金发布了新的文献求助10
2秒前
tudounaodai完成签到,获得积分10
2秒前
Ysj完成签到,获得积分10
3秒前
4秒前
4秒前
李健应助清歌浊酒采纳,获得10
5秒前
6秒前
6秒前
7秒前
8秒前
9秒前
隐形曼青应助LiYupan采纳,获得10
10秒前
111发布了新的文献求助10
10秒前
南金完成签到,获得积分10
10秒前
memory发布了新的文献求助10
11秒前
科研通AI2S应助123采纳,获得10
11秒前
禹依白发布了新的文献求助10
11秒前
12秒前
Caesar发布了新的文献求助10
12秒前
Lin完成签到,获得积分10
12秒前
Lucas应助甜美早晨采纳,获得10
13秒前
不知道是谁完成签到,获得积分10
14秒前
15秒前
木木完成签到,获得积分10
18秒前
泪七龙发布了新的文献求助10
19秒前
zero完成签到,获得积分10
19秒前
等待彩虹发布了新的文献求助10
19秒前
五月拾旧发布了新的文献求助10
19秒前
Caesar完成签到,获得积分10
20秒前
禹依白完成签到,获得积分20
20秒前
领导范儿应助123采纳,获得10
21秒前
D4发布了新的文献求助10
22秒前
科目三应助欢喜怀绿采纳,获得10
23秒前
田様应助随梦而飞采纳,获得10
25秒前
26秒前
26秒前
28秒前
wanci应助科研打工狗采纳,获得10
28秒前
高分求助中
歯科矯正学 第7版(或第5版) 1004
SIS-ISO/IEC TS 27100:2024 Information technology — Cybersecurity — Overview and concepts (ISO/IEC TS 27100:2020, IDT)(Swedish Standard) 1000
Smart but Scattered: The Revolutionary Executive Skills Approach to Helping Kids Reach Their Potential (第二版) 1000
Semiconductor Process Reliability in Practice 720
GROUP-THEORY AND POLARIZATION ALGEBRA 500
Mesopotamian divination texts : conversing with the gods : sources from the first millennium BCE 500
Days of Transition. The Parsi Death Rituals(2011) 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3233011
求助须知:如何正确求助?哪些是违规求助? 2879662
关于积分的说明 8212270
捐赠科研通 2547168
什么是DOI,文献DOI怎么找? 1376574
科研通“疑难数据库(出版商)”最低求助积分说明 647659
邀请新用户注册赠送积分活动 623067