Autonomous maneuver decision-making for a UCAV in short-range aerial combat based on an MS-DDQN algorithm

导弹 空战 趋同(经济学) 航程(航空) 过程(计算) 培训(气象学) 工程类 人工智能 路径(计算) 强化学习 计算机科学 控制(管理) 模拟 算法 控制工程 控制理论(社会学) 航空航天工程 气象学 经济 程序设计语言 物理 操作系统 经济增长
作者
Yongfeng Li,Jingping Shi,Wei Jiang,Weiguo Zhang,Yongxi Lyu
出处
期刊:Defence Technology [Elsevier BV]
卷期号:18 (9): 1697-1714 被引量:19
标识
DOI:10.1016/j.dt.2021.09.014
摘要

To solve the problem of realizing autonomous aerial combat decision-making for unmanned combat aerial vehicles (UCAVs) rapidly and accurately in an uncertain environment, this paper proposes a decision-making method based on an improved deep reinforcement learning (DRL) algorithm: the multi-step double deep Q-network (MS-DDQN) algorithm. First, a six-degree-of-freedom UCAV model based on an aircraft control system is established on a simulation platform, and the situation assessment functions of the UCAV and its target are established by considering their angles, altitudes, environments, missile attack performances, and UCAV performance. By controlling the flight path angle, roll angle, and flight velocity, 27 common basic actions are designed. On this basis, aiming to overcome the defects of traditional DRL in terms of training speed and convergence speed, the improved MS-DDQN method is introduced to incorporate the final return value into the previous steps. Finally, the pre-training learning model is used as the starting point for the second learning model to simulate the UCAV aerial combat decision-making process based on the basic training method, which helps to shorten the training time and improve the learning efficiency. The improved DRL algorithm significantly accelerates the training speed and estimates the target value more accurately during training, and it can be applied to aerial combat decision-making.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
uu发布了新的文献求助10
刚刚
SciGPT应助李俩甜蜜蜜采纳,获得10
2秒前
Rondab应助zhangzhang采纳,获得10
2秒前
热情的水杯完成签到,获得积分10
2秒前
支焱完成签到,获得积分10
3秒前
4秒前
4秒前
4秒前
4秒前
请叫我表情帝完成签到 ,获得积分10
7秒前
香蕉觅云应助西子阳采纳,获得10
7秒前
感觉他香香的完成签到 ,获得积分10
8秒前
8秒前
8秒前
淡然依凝发布了新的文献求助10
9秒前
牙牙侠完成签到,获得积分10
10秒前
FashionBoy应助lixm采纳,获得10
10秒前
10秒前
天边外发布了新的文献求助10
11秒前
wtc完成签到,获得积分10
11秒前
易达发布了新的文献求助30
13秒前
lpw发布了新的文献求助10
13秒前
yangyj发布了新的文献求助10
15秒前
15秒前
今后应助牙牙侠采纳,获得10
15秒前
皮皮虾小段完成签到 ,获得积分10
15秒前
充电宝应助美味的薯片采纳,获得10
16秒前
cm完成签到 ,获得积分10
16秒前
16秒前
柏林寒冬应助cigar采纳,获得10
17秒前
GLL完成签到,获得积分10
17秒前
17秒前
今后应助要减肥的晓曼采纳,获得10
18秒前
18秒前
烟花应助流光采纳,获得10
19秒前
田様应助西子阳采纳,获得10
21秒前
happyGUGU完成签到,获得积分20
21秒前
mm完成签到,获得积分10
21秒前
Zzhangoo发布了新的文献求助10
23秒前
25秒前
高分求助中
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
A new approach to the extrapolation of accelerated life test data 1000
Problems of point-blast theory 400
北师大毕业论文 基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 390
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
Novel Preparation of Chitin Nanocrystals by H2SO4 and H3PO4 Hydrolysis Followed by High-Pressure Water Jet Treatments 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3998569
求助须知:如何正确求助?哪些是违规求助? 3538078
关于积分的说明 11273314
捐赠科研通 3277023
什么是DOI,文献DOI怎么找? 1807331
邀请新用户注册赠送积分活动 883825
科研通“疑难数据库(出版商)”最低求助积分说明 810070