亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Autonomous maneuver decision-making for a UCAV in short-range aerial combat based on an MS-DDQN algorithm

导弹 空战 趋同(经济学) 航程(航空) 过程(计算) 培训(气象学) 工程类 人工智能 路径(计算) 强化学习 计算机科学 控制(管理) 模拟 算法 控制工程 控制理论(社会学) 航空航天工程 程序设计语言 物理 气象学 经济 操作系统 经济增长
作者
Yongfeng Li,Jingping Shi,Wei Jiang,Weiguo Zhang,Yongxi Lyu
出处
期刊:Defence Technology [Elsevier]
卷期号:18 (9): 1697-1714 被引量:19
标识
DOI:10.1016/j.dt.2021.09.014
摘要

To solve the problem of realizing autonomous aerial combat decision-making for unmanned combat aerial vehicles (UCAVs) rapidly and accurately in an uncertain environment, this paper proposes a decision-making method based on an improved deep reinforcement learning (DRL) algorithm: the multi-step double deep Q-network (MS-DDQN) algorithm. First, a six-degree-of-freedom UCAV model based on an aircraft control system is established on a simulation platform, and the situation assessment functions of the UCAV and its target are established by considering their angles, altitudes, environments, missile attack performances, and UCAV performance. By controlling the flight path angle, roll angle, and flight velocity, 27 common basic actions are designed. On this basis, aiming to overcome the defects of traditional DRL in terms of training speed and convergence speed, the improved MS-DDQN method is introduced to incorporate the final return value into the previous steps. Finally, the pre-training learning model is used as the starting point for the second learning model to simulate the UCAV aerial combat decision-making process based on the basic training method, which helps to shorten the training time and improve the learning efficiency. The improved DRL algorithm significantly accelerates the training speed and estimates the target value more accurately during training, and it can be applied to aerial combat decision-making.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
建议保存本图,每天支付宝扫一扫(相册选取)领红包
实时播报
李爱国应助柔弱小霸王采纳,获得10
8秒前
KSung发布了新的文献求助10
10秒前
Wu完成签到,获得积分10
11秒前
喜悦的土豆完成签到,获得积分20
12秒前
852应助Wu采纳,获得10
13秒前
18秒前
23秒前
无极微光应助maprang采纳,获得20
34秒前
35秒前
36秒前
02发布了新的文献求助10
41秒前
KSung发布了新的文献求助10
57秒前
浮游应助科研通管家采纳,获得10
1分钟前
浮游应助科研通管家采纳,获得10
1分钟前
浮游应助科研通管家采纳,获得10
1分钟前
浮游应助科研通管家采纳,获得10
1分钟前
浮游应助科研通管家采纳,获得10
1分钟前
慕青应助科研通管家采纳,获得10
1分钟前
打打应助科研通管家采纳,获得10
1分钟前
思源应助科研通管家采纳,获得10
1分钟前
DrN完成签到,获得积分10
1分钟前
KSung发布了新的文献求助10
1分钟前
海昌完成签到,获得积分10
1分钟前
1分钟前
1分钟前
1分钟前
研友_8Y26PL完成签到 ,获得积分10
1分钟前
xxll完成签到,获得积分10
1分钟前
merrylake完成签到 ,获得积分10
1分钟前
2分钟前
2分钟前
失眠呆呆鱼完成签到 ,获得积分10
2分钟前
nojego完成签到,获得积分10
2分钟前
乐乐应助喜悦的土豆采纳,获得10
2分钟前
jyy发布了新的文献求助10
2分钟前
华仔应助KSung采纳,获得10
2分钟前
2分钟前
2分钟前
Yuang完成签到 ,获得积分10
2分钟前
2分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Mentoring for Wellbeing in Schools 1200
List of 1,091 Public Pension Profiles by Region 1061
Binary Alloy Phase Diagrams, 2nd Edition 600
Atlas of Liver Pathology: A Pattern-Based Approach 500
A Technologist’s Guide to Performing Sleep Studies 500
Latent Class and Latent Transition Analysis: With Applications in the Social, Behavioral, and Health Sciences 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5498381
求助须知:如何正确求助?哪些是违规求助? 4595607
关于积分的说明 14449515
捐赠科研通 4528426
什么是DOI,文献DOI怎么找? 2481496
邀请新用户注册赠送积分活动 1465648
关于科研通互助平台的介绍 1438361