已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

An integrated deep learning and stochastic optimization approach for resource management in team-based healthcare systems

工作量 计算机科学 任务(项目管理) 资源配置 医疗保健 资源(消歧) 机器学习 人工智能 运筹学 计算机网络 经济增长 操作系统 工程类 经济 管理
作者
Mohammad Ebrahim Olya,Hossein Badri,Sadaf Teimoori,Kai Yang
出处
期刊:Expert Systems With Applications [Elsevier]
卷期号:187: 115924-115924 被引量:5
标识
DOI:10.1016/j.eswa.2021.115924
摘要

The aging of the global population and the increasing number of patients with chronic diseases necessitate an efficient healthcare operations mechanism to enable provision of appropriate services to patients in a timely and cost-efficient manner. This research provides a solution for two unanswered and critical challenges in healthcare team-based resource planning by employing machine learning and stochastic optimization. The first challenge is how the required workload of a patient should be measured and predicted. The second challenge is how decision-makers should plan and optimize resources in a healthcare team and eventually allocate patients to the available resources to efficiently satisfy needs and minimize costs. In this research, we develop a novel integrated model that provides a mathematical and systematic solution for predicting healthcare providers' total workload and balancing their workload when the required workload is unknown. The proposed approach consists of predictive and prescriptive phases. First, we predict the required workload for different patient types by proposing a deep multi-task learning approach. Then, we use the result of the prediction stage as input for assigning every patient to one of the available healthcare teams, determining the number of required teams, and balancing the teams' workloads in the prescriptive decision-making stage. The outcome of this study suggests that using multi-task learning on represented data outperforms other conventional prediction methods. Moreover, the results of using the proposed stochastic optimization model for resource planning indicate that consideration of randomness and stochastic variables in modeling team-based resource allocation reduces the total cost of healthcare operations considerably, and as a result, leads to enhanced access to healthcare.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科研白小白完成签到,获得积分10
1秒前
2秒前
2秒前
搜集达人应助ZS采纳,获得10
5秒前
谁猪沉浮完成签到,获得积分10
5秒前
7秒前
欢喜的伊发布了新的文献求助10
7秒前
Echo完成签到,获得积分10
7秒前
研友_nq2QpZ完成签到,获得积分10
8秒前
manban发布了新的文献求助10
8秒前
幻影阡曦完成签到,获得积分10
9秒前
10秒前
美好乐松应助科研通管家采纳,获得10
10秒前
10秒前
完美世界应助科研通管家采纳,获得10
10秒前
科研通AI2S应助科研通管家采纳,获得10
11秒前
11秒前
酷波er应助科研通管家采纳,获得10
11秒前
大模型应助科研通管家采纳,获得10
11秒前
Jasper应助科研通管家采纳,获得10
11秒前
科研通AI2S应助科研通管家采纳,获得10
11秒前
领导范儿应助科研通管家采纳,获得10
11秒前
11秒前
美好乐松应助科研通管家采纳,获得10
11秒前
上官若男应助科研通管家采纳,获得10
11秒前
大个应助科研通管家采纳,获得10
11秒前
大模型应助科研通管家采纳,获得10
11秒前
汉堡包应助科研通管家采纳,获得10
11秒前
Eden完成签到,获得积分10
12秒前
15秒前
16秒前
19秒前
zgd完成签到 ,获得积分10
19秒前
李健的小迷弟应助清零采纳,获得10
20秒前
ZS发布了新的文献求助10
21秒前
Ava应助李_小_八采纳,获得10
22秒前
Singularity应助时空掌门人采纳,获得20
22秒前
今后应助小郭不洗锅采纳,获得10
22秒前
22秒前
开放灭绝发布了新的文献求助10
23秒前
高分求助中
System in Systemic Functional Linguistics A System-based Theory of Language 1000
Дружба 友好报 (1957-1958) 1000
The Data Economy: Tools and Applications 1000
Essentials of thematic analysis 700
Mantiden - Faszinierende Lauerjäger – Buch gebraucht kaufen 600
PraxisRatgeber Mantiden., faszinierende Lauerjäger. – Buch gebraucht kaufe 600
A Dissection Guide & Atlas to the Rabbit 600
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3117328
求助须知:如何正确求助?哪些是违规求助? 2767297
关于积分的说明 7690348
捐赠科研通 2422557
什么是DOI,文献DOI怎么找? 1286354
科研通“疑难数据库(出版商)”最低求助积分说明 620301
版权声明 599856