An integrated QuEChERS strategy was developed by combining the extraction and purification processes into a single step. All of the pretreatment procedures could be performed in one tube within 5 min with the aid of magnetic nanoparticles and careful optimization of the key parameters, including the dosages of the sorbents (magnetic nanoparticles, C18, and graphitized carbon black), dehydrating and salting out reagents. The optimal method was validated and compared with the conventional QuEChERS method, demonstrating its clear superiority in terms of operating procedure, sample pretreatment time, and reagent dosages while affording equivalent pesticide recoveries and matrix effects. Further application of this method was performed to analyze 127 pesticide residues in solanaceous vegetables (tomato, pepper, and eggplant), leafy vegetables (brassica campestris and cabbage), legumes (green beans and cowpea), melon-type vegetables (cucumber and towel gourd), and a root vegetable (water bamboo), with the mean recoveries of the pesticides in the individual vegetable samples ranging from 70.6 to 92.8%. The method LOQs for these pesticides ranged from 10 to 50 μg/kg depending on the matrix. These results fully confirmed its wide applicability and versatility for achieving robust, rapid, and high-throughput multi-pesticide residues analysis in vegetable samples. More importantly, the developed strategy provides a greener and more "QuEChERS" design concept, which could be applied to the analysis of numerous types of pesticide residues in various matrices.