Decision making for highway complex scenario by improved safety field with learning process

计算机科学 运动学 过程(计算) 约束(计算机辅助设计) 随机博弈 碰撞 期限(时间) 工业工程 领域(数学) 工程类 数学 计算机安全 量子力学 经典力学 机械工程 操作系统 物理 数理经济学 纯数学
作者
Can Xu,Wanzhong Zhao,Liu Jing-qiang,Feng Chen
出处
期刊:Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering [SAGE Publishing]
卷期号:236 (9): 2012-2024 被引量:1
标识
DOI:10.1177/09544070211053279
摘要

To improve the agility and efficiency of the highway decision-making system and overcome the local optimal dilemma of the existing safety field, this paper builds an improved safety field to reflect the advantage of the reachable states and the learning process is further employed to make the decision long-term optimal. Firstly, the improved safety field is prepared by the kinematic model-based prediction of surrounding vehicles and the boundary is determined elaborately to ensure real-time performance. Then, the field is constructed by three individual fields. One is the kinematic field, which is built based the safe-distance model to measure the colliding risk of both moving or no-moving objects accurately. Another is the road field that reflects the lane-marker constraint. The last is the efficiency field, which is introduced creatively to improve efficiency. Furthermore, the learning algorithm is adopted to learn the long-term optimal state-action sequence in the safety field. Finally, the simulations are conducted in Prescan platform to validate the feasibility of the improved safety field in complex scenarios. The results show that the proposed decision algorithm can always drive autonomous vehicle to the state with a long-term optimal payoff and can improve the overall performance compared to the existing pure safety field and the interaction-aware method.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
1秒前
2秒前
小蘑菇应助Lily_0_o采纳,获得10
2秒前
楠810217完成签到,获得积分10
2秒前
2秒前
3秒前
田田完成签到,获得积分10
4秒前
cc发布了新的文献求助10
6秒前
田田发布了新的文献求助10
8秒前
9秒前
985211发布了新的文献求助10
10秒前
hayek完成签到,获得积分10
13秒前
13秒前
14秒前
嵩嵩发布了新的文献求助10
14秒前
小西完成签到 ,获得积分10
15秒前
15秒前
Ray发布了新的文献求助10
15秒前
共享精神应助985211采纳,获得10
18秒前
唐唐完成签到 ,获得积分10
18秒前
Jeamren完成签到,获得积分10
19秒前
今后应助爱撒娇的紫菜采纳,获得10
20秒前
晗晗有酒窝完成签到,获得积分10
20秒前
知行合一发布了新的文献求助10
20秒前
20秒前
21秒前
科研通AI2S应助嵩嵩采纳,获得10
21秒前
23秒前
呆萌的莲完成签到,获得积分10
23秒前
量子星尘发布了新的文献求助10
24秒前
由雨柏完成签到,获得积分10
24秒前
24秒前
27秒前
kinmke完成签到,获得积分10
27秒前
上章发布了新的文献求助10
29秒前
知行合一完成签到,获得积分10
30秒前
wzswzs发布了新的文献求助10
31秒前
31秒前
da_line完成签到,获得积分10
31秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Cognitive Neuroscience: The Biology of the Mind (Sixth Edition) 1000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3958087
求助须知:如何正确求助?哪些是违规求助? 3504271
关于积分的说明 11117667
捐赠科研通 3235582
什么是DOI,文献DOI怎么找? 1788396
邀请新用户注册赠送积分活动 871204
科研通“疑难数据库(出版商)”最低求助积分说明 802541