亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Decision making for highway complex scenario by improved safety field with learning process

计算机科学 运动学 过程(计算) 约束(计算机辅助设计) 随机博弈 碰撞 期限(时间) 工业工程 领域(数学) 工程类 数学 计算机安全 量子力学 经典力学 机械工程 操作系统 物理 数理经济学 纯数学
作者
Can Xu,Wanzhong Zhao,Liu Jing-qiang,Feng Chen
出处
期刊:Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering [SAGE]
卷期号:236 (9): 2012-2024 被引量:1
标识
DOI:10.1177/09544070211053279
摘要

To improve the agility and efficiency of the highway decision-making system and overcome the local optimal dilemma of the existing safety field, this paper builds an improved safety field to reflect the advantage of the reachable states and the learning process is further employed to make the decision long-term optimal. Firstly, the improved safety field is prepared by the kinematic model-based prediction of surrounding vehicles and the boundary is determined elaborately to ensure real-time performance. Then, the field is constructed by three individual fields. One is the kinematic field, which is built based the safe-distance model to measure the colliding risk of both moving or no-moving objects accurately. Another is the road field that reflects the lane-marker constraint. The last is the efficiency field, which is introduced creatively to improve efficiency. Furthermore, the learning algorithm is adopted to learn the long-term optimal state-action sequence in the safety field. Finally, the simulations are conducted in Prescan platform to validate the feasibility of the improved safety field in complex scenarios. The results show that the proposed decision algorithm can always drive autonomous vehicle to the state with a long-term optimal payoff and can improve the overall performance compared to the existing pure safety field and the interaction-aware method.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Criminology34应助科研通管家采纳,获得10
13秒前
Criminology34应助科研通管家采纳,获得10
13秒前
20秒前
lifang完成签到 ,获得积分10
20秒前
天天完成签到,获得积分10
24秒前
38秒前
哈哈哈完成签到,获得积分10
56秒前
catherine发布了新的文献求助30
1分钟前
爱笑半莲完成签到,获得积分10
1分钟前
1分钟前
量子星尘发布了新的文献求助10
1分钟前
满意外套完成签到 ,获得积分10
1分钟前
凭什么完成签到,获得积分10
1分钟前
2分钟前
Criminology34应助科研通管家采纳,获得10
2分钟前
2分钟前
Criminology34应助科研通管家采纳,获得10
2分钟前
天天发布了新的文献求助10
2分钟前
2分钟前
jyy完成签到,获得积分10
2分钟前
3分钟前
学生信的大叔完成签到,获得积分10
3分钟前
3分钟前
量子星尘发布了新的文献求助10
3分钟前
Qing完成签到 ,获得积分10
4分钟前
Criminology34应助科研通管家采纳,获得10
4分钟前
Criminology34应助科研通管家采纳,获得10
4分钟前
Criminology34应助科研通管家采纳,获得10
4分钟前
Criminology34应助科研通管家采纳,获得10
4分钟前
Criminology34应助科研通管家采纳,获得10
4分钟前
从前的我完成签到 ,获得积分10
4分钟前
Wa1Zh0u发布了新的文献求助10
4分钟前
4分钟前
研友_Zb17ln发布了新的文献求助10
4分钟前
null应助研友_Zb17ln采纳,获得10
4分钟前
4分钟前
SDNUDRUG完成签到,获得积分10
5分钟前
5分钟前
6分钟前
Criminology34应助科研通管家采纳,获得10
6分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Real World Research, 5th Edition 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5724022
求助须知:如何正确求助?哪些是违规求助? 5283494
关于积分的说明 15299539
捐赠科研通 4872214
什么是DOI,文献DOI怎么找? 2616665
邀请新用户注册赠送积分活动 1566557
关于科研通互助平台的介绍 1523402