亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

TONR: An exploration for a novel way combining neural network with topology optimization

拓扑优化 人工神经网络 计算机科学 拓扑(电路) 网络拓扑 数学 数学优化 人工智能 有限元法 工程类 计算机网络 结构工程 组合数学
作者
Zeyu Zhang,Yu Li,Weien Zhou,Xiaoqian Chen,Wen Yao,Yong Zhao
出处
期刊:Computer Methods in Applied Mechanics and Engineering [Elsevier]
卷期号:386: 114083-114083 被引量:61
标识
DOI:10.1016/j.cma.2021.114083
摘要

The rapid development of deep learning has opened a new door to the exploration of topology optimization methods. The combination of deep learning and topology optimization has become one of the hottest research fields at the moment. Different from most existing work, this paper conducts an in-depth study on the method of directly using neural networks (NN) to carry out topology optimization. Inspired by the idea from the field of “Inverting Representation of Image” and “Physics-Informed Neural Network”, a topology optimization via neural reparameterization framework (TONR) that can solve various topology optimization problems is formed. The core idea of TONR is Reparameterization , which means the update of the design variables (pseudo-density) in the conventional topology optimization method is transformed into the update of the NN’s parameters. The sensitivity analysis in the conventional topology optimization method is realized by automatic differentiation technology. With the update of NN’s parameters, the density field is optimized. Some strategies for dealing with design constraints, determining NN’s initial parameters, and accelerating training are proposed in the paper. In addition, the solution of the multi-constrained topology optimization problem is also embedded in the TONR framework. Numerical examples show that TONR can stably obtain optimized structures for different optimization problems, including the stress-constrained problem, structural natural frequency optimization problems, compliant mechanism design problems, heat conduction system design problems, and the optimization problem of hyperelastic structures. Compared with the existing methods that combine deep learning with topology optimization, TONR does not need to construct a dataset in advance and does not suffer from structural disconnection. The structures obtained by TONR can be comparable to the conventional methods. • This paper conducts an in-depth exploration of the method that directly executes TO using the NN itself. • In TONR, the update of the design variables in the conventional-TO is transformed into the update of the NN’s parameters. • TONR can solve various optimization problems. • The performance of the optimized structures obtained by TONR can be comparable to that of the conventional method. • TONR employs automatic differentiation to handle differential operators.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
3秒前
笑点低的哈密瓜完成签到,获得积分10
13秒前
35秒前
Suraim完成签到,获得积分10
44秒前
54秒前
1分钟前
willlee发布了新的文献求助20
1分钟前
Santiago完成签到,获得积分10
1分钟前
1分钟前
1分钟前
1分钟前
1分钟前
江洋大盗完成签到,获得积分10
2分钟前
温wen完成签到,获得积分10
2分钟前
Echopotter发布了新的文献求助10
2分钟前
2分钟前
方勇飞发布了新的文献求助10
2分钟前
Echopotter完成签到,获得积分10
2分钟前
科研通AI6应助七七七七七采纳,获得10
3分钟前
范ER完成签到 ,获得积分10
3分钟前
夜幽昙完成签到,获得积分10
3分钟前
3分钟前
3分钟前
apckkk完成签到 ,获得积分10
3分钟前
3分钟前
CipherSage应助willlee采纳,获得10
4分钟前
4分钟前
wyz完成签到 ,获得积分10
4分钟前
Donnie333完成签到,获得积分10
4分钟前
4分钟前
willlee发布了新的文献求助10
4分钟前
开朗的钻石完成签到,获得积分10
4分钟前
willlee发布了新的文献求助10
5分钟前
阿俊完成签到 ,获得积分10
5分钟前
5分钟前
Lily发布了新的文献求助10
6分钟前
在水一方应助willlee采纳,获得10
6分钟前
香蕉觅云应助Lily采纳,获得10
6分钟前
6分钟前
willlee发布了新的文献求助10
6分钟前
高分求助中
晶体学对称群—如何读懂和应用国际晶体学表 1500
Problem based learning 1000
Constitutional and Administrative Law 1000
Microbially Influenced Corrosion of Materials 500
Die Fliegen der Palaearktischen Region. Familie 64 g: Larvaevorinae (Tachininae). 1975 500
Numerical controlled progressive forming as dieless forming 400
Rural Geographies People, Place and the Countryside 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5386382
求助须知:如何正确求助?哪些是违规求助? 4508734
关于积分的说明 14030321
捐赠科研通 4419114
什么是DOI,文献DOI怎么找? 2427413
邀请新用户注册赠送积分活动 1420108
关于科研通互助平台的介绍 1399012