TONR: An exploration for a novel way combining neural network with topology optimization

拓扑优化 人工神经网络 计算机科学 拓扑(电路) 网络拓扑 数学 数学优化 人工智能 有限元法 工程类 计算机网络 结构工程 组合数学
作者
Zeyu Zhang,Yu Li,Weien Zhou,Xiaoqian Chen,Wen Yao,Yong Zhao
出处
期刊:Computer Methods in Applied Mechanics and Engineering [Elsevier]
卷期号:386: 114083-114083 被引量:57
标识
DOI:10.1016/j.cma.2021.114083
摘要

The rapid development of deep learning has opened a new door to the exploration of topology optimization methods. The combination of deep learning and topology optimization has become one of the hottest research fields at the moment. Different from most existing work, this paper conducts an in-depth study on the method of directly using neural networks (NN) to carry out topology optimization. Inspired by the idea from the field of “Inverting Representation of Image” and “Physics-Informed Neural Network”, a topology optimization via neural reparameterization framework (TONR) that can solve various topology optimization problems is formed. The core idea of TONR is Reparameterization , which means the update of the design variables (pseudo-density) in the conventional topology optimization method is transformed into the update of the NN’s parameters. The sensitivity analysis in the conventional topology optimization method is realized by automatic differentiation technology. With the update of NN’s parameters, the density field is optimized. Some strategies for dealing with design constraints, determining NN’s initial parameters, and accelerating training are proposed in the paper. In addition, the solution of the multi-constrained topology optimization problem is also embedded in the TONR framework. Numerical examples show that TONR can stably obtain optimized structures for different optimization problems, including the stress-constrained problem, structural natural frequency optimization problems, compliant mechanism design problems, heat conduction system design problems, and the optimization problem of hyperelastic structures. Compared with the existing methods that combine deep learning with topology optimization, TONR does not need to construct a dataset in advance and does not suffer from structural disconnection. The structures obtained by TONR can be comparable to the conventional methods. • This paper conducts an in-depth exploration of the method that directly executes TO using the NN itself. • In TONR, the update of the design variables in the conventional-TO is transformed into the update of the NN’s parameters. • TONR can solve various optimization problems. • The performance of the optimized structures obtained by TONR can be comparable to that of the conventional method. • TONR employs automatic differentiation to handle differential operators.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
鲨鱼也蛀牙完成签到,获得积分10
刚刚
1秒前
动次打次应助缓慢天抒采纳,获得20
1秒前
冷酷一曲完成签到 ,获得积分10
1秒前
月绛完成签到,获得积分10
2秒前
3秒前
AM完成签到 ,获得积分10
3秒前
kh453发布了新的文献求助10
4秒前
晨光中完成签到,获得积分10
4秒前
大肉猪完成签到,获得积分10
4秒前
三伏天发布了新的文献求助10
4秒前
4秒前
鱿鱼炒黄瓜完成签到,获得积分10
4秒前
2026毕业啦完成签到,获得积分10
4秒前
Summer完成签到 ,获得积分10
4秒前
未闻花名完成签到,获得积分10
5秒前
nininidoc完成签到,获得积分10
5秒前
令狐晓博完成签到,获得积分0
5秒前
田乐天完成签到 ,获得积分10
5秒前
6秒前
ProfWang完成签到,获得积分10
6秒前
赖雅绿完成签到,获得积分10
7秒前
雨小科完成签到 ,获得积分10
8秒前
乐此不疲的猪完成签到,获得积分10
8秒前
郑偏偏完成签到,获得积分10
10秒前
李爱笑完成签到,获得积分10
10秒前
10秒前
Lucas应助文艺的冬卉采纳,获得10
10秒前
宁静致远应助普萘洛尔采纳,获得10
10秒前
寂静岭完成签到,获得积分10
11秒前
zf完成签到 ,获得积分10
11秒前
新陈完成签到 ,获得积分10
12秒前
yu完成签到,获得积分10
12秒前
狂野元柏发布了新的文献求助10
12秒前
无心的不平完成签到,获得积分10
12秒前
大饼子圆完成签到 ,获得积分10
12秒前
酷酷冬莲完成签到,获得积分10
14秒前
白瓜完成签到 ,获得积分10
14秒前
14秒前
jimlau完成签到,获得积分10
15秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Effect of reactor temperature on FCC yield 2000
Very-high-order BVD Schemes Using β-variable THINC Method 1020
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 800
Impiego dell'associazione acetazolamide/pentossifillina nel trattamento dell'ipoacusia improvvisa idiopatica in pazienti affetti da glaucoma cronico 730
錢鍾書楊絳親友書札 600
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3294740
求助须知:如何正确求助?哪些是违规求助? 2930629
关于积分的说明 8446865
捐赠科研通 2602968
什么是DOI,文献DOI怎么找? 1420801
科研通“疑难数据库(出版商)”最低求助积分说明 660682
邀请新用户注册赠送积分活动 643500