TONR: An exploration for a novel way combining neural network with topology optimization

拓扑优化 人工神经网络 计算机科学 拓扑(电路) 网络拓扑 数学 数学优化 人工智能 有限元法 工程类 计算机网络 结构工程 组合数学
作者
Zeyu Zhang,Yu Li,Weien Zhou,Xiaoqian Chen,Wen Yao,Yong Zhao
出处
期刊:Computer Methods in Applied Mechanics and Engineering [Elsevier]
卷期号:386: 114083-114083 被引量:61
标识
DOI:10.1016/j.cma.2021.114083
摘要

The rapid development of deep learning has opened a new door to the exploration of topology optimization methods. The combination of deep learning and topology optimization has become one of the hottest research fields at the moment. Different from most existing work, this paper conducts an in-depth study on the method of directly using neural networks (NN) to carry out topology optimization. Inspired by the idea from the field of “Inverting Representation of Image” and “Physics-Informed Neural Network”, a topology optimization via neural reparameterization framework (TONR) that can solve various topology optimization problems is formed. The core idea of TONR is Reparameterization , which means the update of the design variables (pseudo-density) in the conventional topology optimization method is transformed into the update of the NN’s parameters. The sensitivity analysis in the conventional topology optimization method is realized by automatic differentiation technology. With the update of NN’s parameters, the density field is optimized. Some strategies for dealing with design constraints, determining NN’s initial parameters, and accelerating training are proposed in the paper. In addition, the solution of the multi-constrained topology optimization problem is also embedded in the TONR framework. Numerical examples show that TONR can stably obtain optimized structures for different optimization problems, including the stress-constrained problem, structural natural frequency optimization problems, compliant mechanism design problems, heat conduction system design problems, and the optimization problem of hyperelastic structures. Compared with the existing methods that combine deep learning with topology optimization, TONR does not need to construct a dataset in advance and does not suffer from structural disconnection. The structures obtained by TONR can be comparable to the conventional methods. • This paper conducts an in-depth exploration of the method that directly executes TO using the NN itself. • In TONR, the update of the design variables in the conventional-TO is transformed into the update of the NN’s parameters. • TONR can solve various optimization problems. • The performance of the optimized structures obtained by TONR can be comparable to that of the conventional method. • TONR employs automatic differentiation to handle differential operators.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
英姑应助MM采纳,获得20
1秒前
2秒前
Andyfragrance完成签到,获得积分10
2秒前
科研通AI6应助simey采纳,获得10
2秒前
2秒前
善学以致用应助府中园马采纳,获得10
2秒前
white给white的求助进行了留言
2秒前
xuedan发布了新的文献求助10
3秒前
背英语发布了新的文献求助10
3秒前
玩命的靖仇完成签到,获得积分10
3秒前
3秒前
科研通AI6应助Zhusy采纳,获得10
4秒前
思源应助Zhusy采纳,获得10
4秒前
机灵的波比应助affff采纳,获得10
4秒前
tombo100发布了新的文献求助50
4秒前
4秒前
碧蓝的安露完成签到 ,获得积分10
5秒前
Ava应助bluesky采纳,获得10
5秒前
5秒前
充电宝应助割牙龈肉采纳,获得10
6秒前
6秒前
6秒前
7秒前
彩色亿先发布了新的文献求助10
8秒前
田様应助anwen采纳,获得10
8秒前
领导范儿应助kk采纳,获得10
8秒前
英俊的铭应助科研通管家采纳,获得10
8秒前
田様应助科研通管家采纳,获得10
8秒前
8秒前
华仔应助科研通管家采纳,获得10
8秒前
CodeCraft应助科研通管家采纳,获得10
8秒前
小蘑菇应助科研通管家采纳,获得10
8秒前
Jared应助科研通管家采纳,获得10
8秒前
8秒前
ding应助科研通管家采纳,获得10
8秒前
8秒前
科研通AI6应助科研通管家采纳,获得10
9秒前
顾矜应助科研通管家采纳,获得10
9秒前
NexusExplorer应助科研通管家采纳,获得10
9秒前
研友_VZG7GZ应助科研通管家采纳,获得10
9秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1601
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 800
Biology of the Reptilia. Volume 21. Morphology I. The Skull and Appendicular Locomotor Apparatus of Lepidosauria 620
A Guide to Genetic Counseling, 3rd Edition 500
Laryngeal Mask Anesthesia: Principles and Practice. 2nd ed 500
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5557071
求助须知:如何正确求助?哪些是违规求助? 4642352
关于积分的说明 14667621
捐赠科研通 4583738
什么是DOI,文献DOI怎么找? 2514386
邀请新用户注册赠送积分活动 1488750
关于科研通互助平台的介绍 1459336