TONR: An exploration for a novel way combining neural network with topology optimization

拓扑优化 人工神经网络 计算机科学 拓扑(电路) 网络拓扑 数学 数学优化 人工智能 有限元法 工程类 计算机网络 结构工程 组合数学
作者
Zeyu Zhang,Yu Li,Weien Zhou,Xiaoqian Chen,Wen Yao,Yong Zhao
出处
期刊:Computer Methods in Applied Mechanics and Engineering [Elsevier BV]
卷期号:386: 114083-114083 被引量:61
标识
DOI:10.1016/j.cma.2021.114083
摘要

The rapid development of deep learning has opened a new door to the exploration of topology optimization methods. The combination of deep learning and topology optimization has become one of the hottest research fields at the moment. Different from most existing work, this paper conducts an in-depth study on the method of directly using neural networks (NN) to carry out topology optimization. Inspired by the idea from the field of “Inverting Representation of Image” and “Physics-Informed Neural Network”, a topology optimization via neural reparameterization framework (TONR) that can solve various topology optimization problems is formed. The core idea of TONR is Reparameterization , which means the update of the design variables (pseudo-density) in the conventional topology optimization method is transformed into the update of the NN’s parameters. The sensitivity analysis in the conventional topology optimization method is realized by automatic differentiation technology. With the update of NN’s parameters, the density field is optimized. Some strategies for dealing with design constraints, determining NN’s initial parameters, and accelerating training are proposed in the paper. In addition, the solution of the multi-constrained topology optimization problem is also embedded in the TONR framework. Numerical examples show that TONR can stably obtain optimized structures for different optimization problems, including the stress-constrained problem, structural natural frequency optimization problems, compliant mechanism design problems, heat conduction system design problems, and the optimization problem of hyperelastic structures. Compared with the existing methods that combine deep learning with topology optimization, TONR does not need to construct a dataset in advance and does not suffer from structural disconnection. The structures obtained by TONR can be comparable to the conventional methods. • This paper conducts an in-depth exploration of the method that directly executes TO using the NN itself. • In TONR, the update of the design variables in the conventional-TO is transformed into the update of the NN’s parameters. • TONR can solve various optimization problems. • The performance of the optimized structures obtained by TONR can be comparable to that of the conventional method. • TONR employs automatic differentiation to handle differential operators.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
1秒前
1秒前
落寞的甜瓜完成签到,获得积分10
1秒前
Archie完成签到 ,获得积分10
1秒前
阔达的以丹完成签到,获得积分20
2秒前
Zzzhuan发布了新的文献求助10
2秒前
2秒前
3秒前
匆匆完成签到,获得积分10
3秒前
坚强小蚂蚁完成签到,获得积分10
3秒前
顾矜应助Tiffany采纳,获得10
4秒前
乐乐应助幸福的乾采纳,获得10
4秒前
大模型应助活泼之云采纳,获得30
4秒前
文艺的懿完成签到,获得积分10
4秒前
Nathan完成签到,获得积分10
4秒前
MichaelQin完成签到,获得积分10
5秒前
冷艳的白莲完成签到,获得积分10
5秒前
zheng驳回了慕青应助
5秒前
公硕完成签到 ,获得积分10
5秒前
化学位移值完成签到 ,获得积分10
6秒前
6秒前
千里江山一只蝇完成签到,获得积分10
6秒前
嘿小黑完成签到,获得积分10
6秒前
峥2发布了新的文献求助10
6秒前
刘雯完成签到,获得积分10
6秒前
肖永轩完成签到,获得积分10
6秒前
寒冷的凝旋完成签到,获得积分10
6秒前
7秒前
量子星尘发布了新的文献求助10
9秒前
自然乌龟发布了新的文献求助10
9秒前
寒hep发布了新的文献求助10
9秒前
10秒前
wdy111应助莉莉卡i采纳,获得20
10秒前
PPP完成签到,获得积分10
11秒前
11秒前
小小铱完成签到,获得积分10
12秒前
马香芦完成签到,获得积分10
12秒前
思源应助饱满懿轩采纳,获得10
12秒前
13秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
‘Unruly’ Children: Historical Fieldnotes and Learning Morality in a Taiwan Village (New Departures in Anthropology) 400
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 330
Aktuelle Entwicklungen in der linguistischen Forschung 300
Current Perspectives on Generative SLA - Processing, Influence, and Interfaces 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3986618
求助须知:如何正确求助?哪些是违规求助? 3529071
关于积分的说明 11243225
捐赠科研通 3267556
什么是DOI,文献DOI怎么找? 1803784
邀请新用户注册赠送积分活动 881185
科研通“疑难数据库(出版商)”最低求助积分说明 808582