TONR: An exploration for a novel way combining neural network with topology optimization

拓扑优化 人工神经网络 计算机科学 拓扑(电路) 网络拓扑 数学 数学优化 人工智能 有限元法 工程类 计算机网络 结构工程 组合数学
作者
Zeyu Zhang,Yu Li,Weien Zhou,Xiaoqian Chen,Wen Yao,Yong Zhao
出处
期刊:Computer Methods in Applied Mechanics and Engineering [Elsevier]
卷期号:386: 114083-114083 被引量:61
标识
DOI:10.1016/j.cma.2021.114083
摘要

The rapid development of deep learning has opened a new door to the exploration of topology optimization methods. The combination of deep learning and topology optimization has become one of the hottest research fields at the moment. Different from most existing work, this paper conducts an in-depth study on the method of directly using neural networks (NN) to carry out topology optimization. Inspired by the idea from the field of “Inverting Representation of Image” and “Physics-Informed Neural Network”, a topology optimization via neural reparameterization framework (TONR) that can solve various topology optimization problems is formed. The core idea of TONR is Reparameterization , which means the update of the design variables (pseudo-density) in the conventional topology optimization method is transformed into the update of the NN’s parameters. The sensitivity analysis in the conventional topology optimization method is realized by automatic differentiation technology. With the update of NN’s parameters, the density field is optimized. Some strategies for dealing with design constraints, determining NN’s initial parameters, and accelerating training are proposed in the paper. In addition, the solution of the multi-constrained topology optimization problem is also embedded in the TONR framework. Numerical examples show that TONR can stably obtain optimized structures for different optimization problems, including the stress-constrained problem, structural natural frequency optimization problems, compliant mechanism design problems, heat conduction system design problems, and the optimization problem of hyperelastic structures. Compared with the existing methods that combine deep learning with topology optimization, TONR does not need to construct a dataset in advance and does not suffer from structural disconnection. The structures obtained by TONR can be comparable to the conventional methods. • This paper conducts an in-depth exploration of the method that directly executes TO using the NN itself. • In TONR, the update of the design variables in the conventional-TO is transformed into the update of the NN’s parameters. • TONR can solve various optimization problems. • The performance of the optimized structures obtained by TONR can be comparable to that of the conventional method. • TONR employs automatic differentiation to handle differential operators.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
田柾国发布了新的文献求助10
3秒前
FashionBoy应助科研通管家采纳,获得10
3秒前
Owen应助科研通管家采纳,获得10
3秒前
风中的青完成签到,获得积分10
3秒前
orixero应助科研通管家采纳,获得10
3秒前
Akim应助科研通管家采纳,获得10
3秒前
无花果应助科研通管家采纳,获得10
3秒前
顾矜应助科研通管家采纳,获得10
3秒前
量子星尘发布了新的文献求助10
4秒前
科研通AI6应助科研通管家采纳,获得10
4秒前
panda完成签到,获得积分10
4秒前
英姑应助科研通管家采纳,获得10
4秒前
sswbzh应助科研通管家采纳,获得50
4秒前
爆米花应助科研通管家采纳,获得10
4秒前
Orange应助科研通管家采纳,获得10
4秒前
顾矜应助科研通管家采纳,获得10
5秒前
5秒前
科研通AI6应助科研通管家采纳,获得10
5秒前
隐形曼青应助科研通管家采纳,获得10
5秒前
彭于晏应助科研通管家采纳,获得10
5秒前
寻道图强应助科研通管家采纳,获得40
5秒前
爆米花应助科研通管家采纳,获得10
5秒前
华仔应助科研通管家采纳,获得10
6秒前
6秒前
orixero应助科研通管家采纳,获得10
6秒前
6秒前
6秒前
6秒前
6秒前
6秒前
所所应助科研通管家采纳,获得10
6秒前
6秒前
6秒前
6秒前
6秒前
6秒前
6秒前
6秒前
6秒前
6秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Russian Foreign Policy: Change and Continuity 800
Real World Research, 5th Edition 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5713133
求助须知:如何正确求助?哪些是违规求助? 5213704
关于积分的说明 15269646
捐赠科研通 4864955
什么是DOI,文献DOI怎么找? 2611759
邀请新用户注册赠送积分活动 1562014
关于科研通互助平台的介绍 1519213