Wnt信号通路
肺动脉
右心室肥大
肺动脉高压
细胞凋亡
内科学
医学
癌症研究
化学
心脏病学
作者
Yong Lei,Q I Yang,Yongmei Nie,Juyi Wan,Mingbin Deng
摘要
Pulmonary hypertension (PH) associated with congenital heart disease is a progressive hemodynamic disease that can lead to increased pulmonary vascular resistance, vascular remodeling, and even right heart failure and death. LF3 is a novel inhibitor of the reporter gene activity of β-catenin/TCF4 interaction in the Wnt/β-catenin signal pathway. However, whether this action of LF3 can prevent PH development remains unclear. In this study, we investigated the therapeutic effect of LF3 in rat primary pulmonary artery smooth muscle cells (PASMCs) of the PH model. We found that LF3 inhibited the decrease in pulmonary artery acceleration time and ejection time by ultra-high-resolution ultrasound imaging and blocked the increase of pulmonary artery systolic pressure by using the BL420 biological function experimental system and right ventricular hypertrophy index by the electronic scales. Simultaneously, it prevented the increase of α-smooth muscle actin and fibronectin and the decrease of elastin in pulmonary arteries of rats in the PH group, as revealed by an immunohistochemical analysis. Moreover, cell proliferation and migration assays showed that LF3 significantly reduced the proliferation and migration of PASMCs. Western blotting and quantitative real-time polymerase chain reaction analyses revealed that LF3 suppressed the expression of proliferating cell nuclear antigens and Bcl-2 and increased the expression of Bax but did not alter the expressions of β-catenin and TCF4. Taken together, LF3 can reduce the migration and proliferation of PASMCs and induce their apoptosis to prevent the development of PH. It would be worthwhile to explore the potential use of LF3 in the treatment of PH.
科研通智能强力驱动
Strongly Powered by AbleSci AI