Hierarchical Bayesian estimation of covariate effects on airway and alveolar nitric oxide

协变量 贝叶斯概率 计算机科学 一氧化氮 气道 估计 统计 医学 人工智能 数学 内科学 机器学习 外科 经济 管理
作者
Jingying Weng,Noa Molshatzki,Paul Marjoram,W. James Gauderman,Frank D. Gilliland,Sandrah P. Eckel
出处
期刊:Scientific Reports [Nature Portfolio]
卷期号:11 (1) 被引量:3
标识
DOI:10.1038/s41598-021-96176-z
摘要

Exhaled breath biomarkers are an important emerging field. The fractional concentration of exhaled nitric oxide (FeNO) is a marker of airway inflammation with clinical and epidemiological applications (e.g., air pollution health effects studies). Systems of differential equations describe FeNO-measured non-invasively at the mouth-as a function of exhalation flow rate and parameters representing airway and alveolar sources of NO in the airway. Traditionally, NO parameters have been estimated separately for each study participant (Stage I) and then related to covariates (Stage II). Statistical properties of these two-step approaches have not been investigated. In simulation studies, we evaluated finite sample properties of existing two-step methods as well as a novel Unified Hierarchical Bayesian (U-HB) model. The U-HB is a one-step estimation method developed with the goal of properly propagating uncertainty as well as increasing power and reducing type I error for estimating associations of covariates with NO parameters. We demonstrated the U-HB method in an analysis of data from the southern California Children's Health Study relating traffic-related air pollution exposure to airway and alveolar airway inflammation.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
华仔应助科研通管家采纳,获得10
1秒前
1秒前
1秒前
1秒前
1秒前
1秒前
NexusExplorer应助科研通管家采纳,获得10
1秒前
1秒前
1秒前
1秒前
NexusExplorer应助韦一手采纳,获得10
1秒前
量子星尘发布了新的文献求助50
2秒前
qqq发布了新的文献求助20
2秒前
2秒前
zoe发布了新的文献求助10
2秒前
2秒前
2秒前
ayin2333完成签到,获得积分10
2秒前
iiiiheuns完成签到,获得积分10
3秒前
狂野的蜡烛应助weixiao采纳,获得10
3秒前
aspen完成签到,获得积分10
3秒前
甜蜜咖啡豆完成签到,获得积分10
4秒前
cgjj完成签到,获得积分20
4秒前
汉堡包应助Zephyr采纳,获得10
5秒前
5秒前
田様应助大号采纳,获得10
5秒前
6秒前
Jeriu完成签到,获得积分10
6秒前
舒心谷雪完成签到 ,获得积分10
6秒前
aspen发布了新的文献求助10
6秒前
6秒前
Hello应助科研狂徒采纳,获得10
6秒前
maomao发布了新的文献求助30
6秒前
7秒前
传奇3应助张磊采纳,获得10
7秒前
淡定映之完成签到,获得积分20
7秒前
7秒前
鸽子完成签到,获得积分10
8秒前
8秒前
8秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Manipulating the Mouse Embryo: A Laboratory Manual, Fourth Edition 1000
Comparison of spinal anesthesia and general anesthesia in total hip and total knee arthroplasty: a meta-analysis and systematic review 500
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
Founding Fathers The Shaping of America 500
Distinct Aggregation Behaviors and Rheological Responses of Two Terminally Functionalized Polyisoprenes with Different Quadruple Hydrogen Bonding Motifs 460
Writing to the Rhythm of Labor Cultural Politics of the Chinese Revolution, 1942–1976 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4572570
求助须知:如何正确求助?哪些是违规求助? 3993286
关于积分的说明 12361873
捐赠科研通 3666367
什么是DOI,文献DOI怎么找? 2020752
邀请新用户注册赠送积分活动 1054961
科研通“疑难数据库(出版商)”最低求助积分说明 942355