Rapid ripening stage classification and dry matter prediction of durian pulp using a pushbroom near infrared hyperspectral imaging system

高光谱成像 成熟度 偏最小二乘回归 线性判别分析 支持向量机 主成分分析 成熟 模式识别(心理学) 人工智能 均方误差 数学 近红外光谱 计算机科学 统计 化学 光学 食品科学 物理
作者
Sanjay Sharma,K C Sumesh,Panmanas Sirisomboon
出处
期刊:Measurement [Elsevier BV]
卷期号:189: 110464-110464 被引量:11
标识
DOI:10.1016/j.measurement.2021.110464
摘要

This research examined the potential of a pushbroom near infrared hyperspectral imaging (NIR-HSI) system (900–1600 nm) for ripening stage (unripe, ripe, and overripe) classification based on the days after anthesis (DAA) and dry matter (DM) prediction of durian pulp. The performance of five supervised machine learning classifiers was compared including support vector machines (SVM), random forest (RF), linear discriminant analysis (LDA) partial least squares-discriminant analysis (PLS-DA), and k-nearest neighbors (kNN) for the ripening stage classification and a partial least squares regression (PLSR) model was developed for the DM prediction. The classification and regression models were developed and compared using the full and selected wavelengths by genetic algorithms (GA) and principal component analysis (PCA). For classification, LDA showed the best result with a test accuracy of 100% for both full wavelength and selected 135 wavelengths by GA. A total of 11 wavelengths selected from PCA achieved a test accuracy of 93.6% by LDA. The PLSR models predicted the DM with the coefficient of determination of prediction (Rp2) greater than 0.80 and a root mean square error of prediction (RMSEP) less than 1.6%. The results show that NIR-HSI has the potential to identify ripeness correctly, predict the DM and visualize the spatial distribution of durian pulp. This approach can be implemented in the packaging firms to solve the problems related to uneven ripeness and to inspect the quality of durian based on DM content.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
冲浪男孩226完成签到 ,获得积分10
刚刚
JIE发布了新的文献求助10
1秒前
程大海完成签到,获得积分10
2秒前
大模型应助科研通管家采纳,获得10
2秒前
天天快乐应助科研通管家采纳,获得10
2秒前
竹筏过海应助科研通管家采纳,获得30
2秒前
丘比特应助科研通管家采纳,获得10
2秒前
脑洞疼应助科研通管家采纳,获得10
2秒前
ED应助科研通管家采纳,获得10
2秒前
竹筏过海应助科研通管家采纳,获得30
2秒前
hoijuon应助科研通管家采纳,获得10
3秒前
慕青应助科研通管家采纳,获得30
3秒前
所所应助科研通管家采纳,获得10
3秒前
小二郎应助科研通管家采纳,获得10
3秒前
深情安青应助科研通管家采纳,获得10
3秒前
核桃应助科研通管家采纳,获得10
3秒前
上官若男应助科研通管家采纳,获得10
3秒前
所所应助似月白采纳,获得10
3秒前
李爱国应助科研通管家采纳,获得10
3秒前
FashionBoy应助科研通管家采纳,获得10
4秒前
打打应助科研通管家采纳,获得10
4秒前
香蕉觅云应助科研通管家采纳,获得10
4秒前
orixero应助科研通管家采纳,获得10
4秒前
4秒前
小马甲应助科研通管家采纳,获得10
4秒前
4秒前
4秒前
4秒前
英俊的铭应助科研通管家采纳,获得10
4秒前
4秒前
4秒前
ED应助科研通管家采纳,获得10
4秒前
阳光初柔完成签到,获得积分20
5秒前
爱静静应助苫糖采纳,获得10
5秒前
STAN完成签到,获得积分10
6秒前
沉123发布了新的文献求助10
6秒前
6秒前
牛顿的苹果完成签到,获得积分10
6秒前
ljc完成签到,获得积分10
7秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
Immigrant Incorporation in East Asian Democracies 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3966069
求助须知:如何正确求助?哪些是违规求助? 3511435
关于积分的说明 11158171
捐赠科研通 3246056
什么是DOI,文献DOI怎么找? 1793288
邀请新用户注册赠送积分活动 874284
科研通“疑难数据库(出版商)”最低求助积分说明 804311