Rapid ripening stage classification and dry matter prediction of durian pulp using a pushbroom near infrared hyperspectral imaging system

高光谱成像 成熟度 偏最小二乘回归 线性判别分析 支持向量机 主成分分析 成熟 模式识别(心理学) 人工智能 均方误差 数学 近红外光谱 计算机科学 统计 化学 光学 食品科学 物理
作者
Sanjay Sharma,K C Sumesh,Panmanas Sirisomboon
出处
期刊:Measurement [Elsevier BV]
卷期号:189: 110464-110464 被引量:11
标识
DOI:10.1016/j.measurement.2021.110464
摘要

This research examined the potential of a pushbroom near infrared hyperspectral imaging (NIR-HSI) system (900–1600 nm) for ripening stage (unripe, ripe, and overripe) classification based on the days after anthesis (DAA) and dry matter (DM) prediction of durian pulp. The performance of five supervised machine learning classifiers was compared including support vector machines (SVM), random forest (RF), linear discriminant analysis (LDA) partial least squares-discriminant analysis (PLS-DA), and k-nearest neighbors (kNN) for the ripening stage classification and a partial least squares regression (PLSR) model was developed for the DM prediction. The classification and regression models were developed and compared using the full and selected wavelengths by genetic algorithms (GA) and principal component analysis (PCA). For classification, LDA showed the best result with a test accuracy of 100% for both full wavelength and selected 135 wavelengths by GA. A total of 11 wavelengths selected from PCA achieved a test accuracy of 93.6% by LDA. The PLSR models predicted the DM with the coefficient of determination of prediction (Rp2) greater than 0.80 and a root mean square error of prediction (RMSEP) less than 1.6%. The results show that NIR-HSI has the potential to identify ripeness correctly, predict the DM and visualize the spatial distribution of durian pulp. This approach can be implemented in the packaging firms to solve the problems related to uneven ripeness and to inspect the quality of durian based on DM content.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
FashionBoy应助忧虑的访梦采纳,获得10
刚刚
lili发布了新的文献求助10
刚刚
JPH1990应助小岚花采纳,获得10
1秒前
上官若男应助西梅采纳,获得10
1秒前
科研通AI6应助雨碎寒江采纳,获得10
2秒前
2秒前
陌然浅笑发布了新的文献求助10
3秒前
核桃发布了新的文献求助10
3秒前
4秒前
勤qin发布了新的文献求助10
5秒前
WY完成签到,获得积分10
6秒前
wanci应助爱学习的YY采纳,获得10
6秒前
舒心明杰完成签到,获得积分10
6秒前
赘婿应助xh采纳,获得10
6秒前
王麒发布了新的文献求助10
7秒前
isonomia完成签到,获得积分10
7秒前
Livrik发布了新的文献求助10
7秒前
小刘同学发布了新的文献求助10
8秒前
小蘑菇应助曼凡采纳,获得10
8秒前
繁弱发布了新的文献求助10
9秒前
如果完成签到,获得积分10
9秒前
YYYY完成签到,获得积分10
9秒前
123茄子完成签到 ,获得积分10
9秒前
Jeanne完成签到,获得积分10
10秒前
开整吧完成签到,获得积分10
10秒前
整点儿薯条完成签到,获得积分10
10秒前
lll完成签到,获得积分10
11秒前
11秒前
田様应助LIUYI采纳,获得10
11秒前
12秒前
12秒前
xh完成签到,获得积分10
13秒前
曼凡应助文件撤销了驳回
15秒前
樱岛麻衣完成签到,获得积分10
15秒前
Ava应助lili采纳,获得10
16秒前
dream完成签到 ,获得积分10
16秒前
16秒前
16秒前
ANLYep完成签到,获得积分10
17秒前
高分求助中
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
哈工大泛函分析教案课件、“72小时速成泛函分析:从入门到入土.PDF”等 660
Theory of Dislocations (3rd ed.) 500
Comparing natural with chemical additive production 500
The Leucovorin Guide for Parents: Understanding Autism’s Folate 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5227238
求助须知:如何正确求助?哪些是违规求助? 4398359
关于积分的说明 13689318
捐赠科研通 4263055
什么是DOI,文献DOI怎么找? 2339509
邀请新用户注册赠送积分活动 1336803
关于科研通互助平台的介绍 1292920