Efficient and stable wireless power transfer based on the non-Hermitian physics

无线电源传输 厄米矩阵 物理 光子学 奇偶性(物理) 无线 电磁线圈 拓扑(电路) 最大功率转移定理 计算机科学 功率(物理) 电气工程 量子力学 电信 工程类
作者
Chao Zeng,Zhiwei Guo,Kejia Zhu,Caifu Fan,Li Guo,Jun Jiang,Yunhui Li,Haitao Jiang,Yaping Yang,Yong Sun,Hong Chen
出处
期刊:Chinese Physics B [IOP Publishing]
卷期号:31 (1): 010307-010307 被引量:11
标识
DOI:10.1088/1674-1056/ac3815
摘要

As one of the most attractive non-radiative power transfer mechanisms without cables, efficient magnetic resonance wireless power transfer (WPT) in the near field has been extensively developed in recent years, and promoted a variety of practical applications, such as mobile phones, medical implant devices and electric vehicles. However, the physical mechanism behind some key limitations of the resonance WPT, such as frequency splitting and size-dependent efficiency, is not very clear under the widely used circuit model. Here, we review the recently developed efficient and stable resonance WPT based on non-Hermitian physics, which starts from a completely different avenue (utilizing loss and gain) to introduce novel functionalities to the resonance WPT. From the perspective of non-Hermitian photonics, the coherent and incoherent effects compete and coexist in the WPT system, and the weak stable of energy transfer mainly comes from the broken phase associated with the phase transition of parity–time symmetry. Based on this basic physical framework, some optimization schemes are proposed, including using nonlinear effect, using bound states in the continuum, or resorting to the system with high-order parity-time symmetry. Moreover, the combination of non-Hermitian physics and topological photonics in multi-coil system also provides a versatile platform for long-range robust WPT with topological protection. Therefore, the non-Hermitian physics can not only exactly predict the main results of current WPT systems, but also provide new ways to solve the difficulties of previous designs.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
泡泡汽水发布了新的文献求助10
1秒前
小王同学发布了新的文献求助10
3秒前
vica发布了新的文献求助10
4秒前
5秒前
上官若男应助妥妥酱采纳,获得10
7秒前
8秒前
lyx完成签到,获得积分10
9秒前
11秒前
兔兔发布了新的文献求助20
12秒前
12秒前
科目三应助魔幻灯泡采纳,获得10
12秒前
互助遵法尚德应助喜庆采纳,获得10
12秒前
Smiles发布了新的文献求助10
13秒前
泡泡汽水完成签到,获得积分10
14秒前
小王同学完成签到,获得积分10
15秒前
FashionBoy应助陈住气采纳,获得10
15秒前
我现在感觉很颓完成签到,获得积分10
16秒前
哈哈哈哈发布了新的文献求助10
17秒前
wlnhyF完成签到,获得积分10
19秒前
斯文败类应助fenmiao采纳,获得30
21秒前
Smiles完成签到,获得积分10
21秒前
你好呀嘻嘻完成签到 ,获得积分10
22秒前
22秒前
24秒前
嘎嘎的鸡神完成签到,获得积分10
24秒前
高大凌寒应助香蕉汉堡采纳,获得10
25秒前
幽若宝宝完成签到,获得积分0
26秒前
fanfan完成签到,获得积分20
27秒前
DDX完成签到 ,获得积分10
27秒前
27秒前
喜庆完成签到,获得积分10
28秒前
不敢心动发布了新的文献求助10
29秒前
29秒前
庸人自扰完成签到,获得积分10
33秒前
99giddens发布了新的文献求助200
33秒前
34秒前
简单奎发布了新的文献求助10
34秒前
大模型应助Wonder采纳,获得10
37秒前
菜鸟12号完成签到 ,获得积分10
38秒前
vica完成签到,获得积分10
39秒前
高分求助中
Evolution 10000
ISSN 2159-8274 EISSN 2159-8290 1000
Becoming: An Introduction to Jung's Concept of Individuation 600
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 500
The Kinetic Nitration and Basicity of 1,2,4-Triazol-5-ones 440
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3159827
求助须知:如何正确求助?哪些是违规求助? 2810777
关于积分的说明 7889328
捐赠科研通 2469852
什么是DOI,文献DOI怎么找? 1315126
科研通“疑难数据库(出版商)”最低求助积分说明 630742
版权声明 602012