Identifying diverse metal oxide nanomaterials with lethal effects on embryonic zebrafish using machine learning

斑马鱼 纳米材料 纳米技术 氧化物 胚胎干细胞 材料科学 纳米毒理学 金属 化学 纳米颗粒 冶金 生物化学 基因
作者
Richard Marchese Robinson,Haralambos Sarimveis,Philip Doganis,Xiaodong Jia,Marianna Kotzabasaki,Christiana Gousiadou,Stacey L. Harper,Terry Wilkins
出处
期刊:Beilstein Journal of Nanotechnology [Beilstein-Institut]
卷期号:12: 1297-1325 被引量:4
标识
DOI:10.3762/bjnano.12.97
摘要

Manufacturers of nanomaterial-enabled products need models of endpoints that are relevant to human safety to support the “safe by design” paradigm and avoid late-stage attrition. Increasingly, embryonic zebrafish ( Danio Rerio ) are recognised as a key human safety relevant in vivo test system. Hence, machine learning models were developed for identifying metal oxide nanomaterials causing lethality to embryonic zebrafish up to 24 hours post-fertilisation, or excess lethality in the period of 24–120 hours post-fertilisation, at concentrations of 250 ppm or less. Models were developed using data from the Nanomaterial Biological-Interactions Knowledgebase for a dataset of 44 diverse, coated and uncoated metal or, in one case, metalloid oxide nanomaterials. Different modelling approaches were evaluated using nested cross-validation on this dataset. Models were initially developed for both lethality endpoints using multiple descriptors representing the composition of the core, shell and surface functional groups, as well as particle characteristics. However, interestingly, the 24 hours post-fertilisation data were found to be harder to predict, which could reflect different exposure routes. Hence, subsequent analysis focused on the prediction of excess lethality at 120 hours-post fertilisation. The use of two data augmentation approaches, applied for the first time in nano-QSAR research, was explored, yet both failed to boost predictive performance. Interestingly, it was found that comparable results to those originally obtained using multiple descriptors could be obtained using a model based upon a single, simple descriptor: the Pauling electronegativity of the metal atom. Since it is widely recognised that a variety of intrinsic and extrinsic nanomaterial characteristics contribute to their toxicological effects, this is a surprising finding. This may partly reflect the need to investigate more sophisticated descriptors in future studies. Future studies are also required to examine how robust these modelling results are on truly external data, which were not used to select the single descriptor model. This will require further laboratory work to generate comparable data to those studied herein.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
王哈哈发布了新的文献求助10
1秒前
dasheng_发布了新的文献求助10
2秒前
活泼蜡烛完成签到,获得积分10
2秒前
nature发布了新的文献求助10
2秒前
4秒前
陈梓锋发布了新的文献求助10
5秒前
科研通AI6.1应助SCI印刷机采纳,获得10
5秒前
6秒前
正在学医的小啊哈完成签到,获得积分10
6秒前
8秒前
乐观半邪完成签到,获得积分20
9秒前
nature完成签到,获得积分10
9秒前
明亮冰颜发布了新的文献求助10
10秒前
11秒前
量子星尘发布了新的文献求助10
11秒前
王艳完成签到,获得积分20
11秒前
12秒前
量子星尘发布了新的文献求助10
12秒前
13秒前
比比完成签到,获得积分10
15秒前
王艳发布了新的文献求助20
16秒前
蓝天发布了新的文献求助10
16秒前
舒心的秋荷完成签到 ,获得积分10
17秒前
17秒前
18秒前
19秒前
ding应助明亮冰颜采纳,获得10
20秒前
20秒前
粗心的半鬼完成签到,获得积分10
21秒前
徐自豪完成签到 ,获得积分10
21秒前
sky发布了新的文献求助10
23秒前
cuddly完成签到 ,获得积分10
23秒前
花啊拾肆发布了新的文献求助10
23秒前
然463完成签到 ,获得积分10
24秒前
京墨襦完成签到 ,获得积分10
25秒前
ZZJHXN完成签到,获得积分10
28秒前
orangel完成签到,获得积分10
28秒前
Dick完成签到,获得积分10
28秒前
无情修杰完成签到 ,获得积分10
30秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
从k到英国情人 1500
Ägyptische Geschichte der 21.–30. Dynastie 1100
„Semitische Wissenschaften“? 1100
Real World Research, 5th Edition 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5734809
求助须知:如何正确求助?哪些是违规求助? 5356250
关于积分的说明 15327788
捐赠科研通 4879347
什么是DOI,文献DOI怎么找? 2621815
邀请新用户注册赠送积分活动 1571046
关于科研通互助平台的介绍 1527826