Identifying diverse metal oxide nanomaterials with lethal effects on embryonic zebrafish using machine learning

斑马鱼 纳米材料 纳米技术 氧化物 胚胎干细胞 材料科学 纳米毒理学 金属 化学 纳米颗粒 冶金 生物化学 基因
作者
Richard Marchese Robinson,Haralambos Sarimveis,Philip Doganis,Xiaodong Jia,Marianna Kotzabasaki,Christiana Gousiadou,Stacey L. Harper,Terry Wilkins
出处
期刊:Beilstein Journal of Nanotechnology [Beilstein Institute for the Advancement of Chemical Sciences]
卷期号:12: 1297-1325 被引量:4
标识
DOI:10.3762/bjnano.12.97
摘要

Manufacturers of nanomaterial-enabled products need models of endpoints that are relevant to human safety to support the “safe by design” paradigm and avoid late-stage attrition. Increasingly, embryonic zebrafish ( Danio Rerio ) are recognised as a key human safety relevant in vivo test system. Hence, machine learning models were developed for identifying metal oxide nanomaterials causing lethality to embryonic zebrafish up to 24 hours post-fertilisation, or excess lethality in the period of 24–120 hours post-fertilisation, at concentrations of 250 ppm or less. Models were developed using data from the Nanomaterial Biological-Interactions Knowledgebase for a dataset of 44 diverse, coated and uncoated metal or, in one case, metalloid oxide nanomaterials. Different modelling approaches were evaluated using nested cross-validation on this dataset. Models were initially developed for both lethality endpoints using multiple descriptors representing the composition of the core, shell and surface functional groups, as well as particle characteristics. However, interestingly, the 24 hours post-fertilisation data were found to be harder to predict, which could reflect different exposure routes. Hence, subsequent analysis focused on the prediction of excess lethality at 120 hours-post fertilisation. The use of two data augmentation approaches, applied for the first time in nano-QSAR research, was explored, yet both failed to boost predictive performance. Interestingly, it was found that comparable results to those originally obtained using multiple descriptors could be obtained using a model based upon a single, simple descriptor: the Pauling electronegativity of the metal atom. Since it is widely recognised that a variety of intrinsic and extrinsic nanomaterial characteristics contribute to their toxicological effects, this is a surprising finding. This may partly reflect the need to investigate more sophisticated descriptors in future studies. Future studies are also required to examine how robust these modelling results are on truly external data, which were not used to select the single descriptor model. This will require further laboratory work to generate comparable data to those studied herein.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
斯文败类应助认真的曲奇采纳,获得10
刚刚
刚刚
完美世界应助ljzhhh采纳,获得10
刚刚
赵yy应助linnnn采纳,获得10
1秒前
OE完成签到,获得积分10
1秒前
heizbimawan发布了新的文献求助10
1秒前
yaya发布了新的文献求助10
2秒前
2秒前
在水一方应助花花采纳,获得10
2秒前
2秒前
正爱霜发布了新的文献求助10
3秒前
今后应助唐糖采纳,获得10
3秒前
小虎完成签到,获得积分10
4秒前
从容芸完成签到,获得积分10
4秒前
4秒前
达布溜完成签到,获得积分10
4秒前
5秒前
5秒前
5秒前
Hello应助徐佳乐采纳,获得10
5秒前
6秒前
小二郎应助安小安采纳,获得10
6秒前
princecoof发布了新的文献求助10
6秒前
8R60d8应助candyTT采纳,获得10
6秒前
CL完成签到,获得积分10
6秒前
6秒前
7秒前
fff发布了新的文献求助30
8秒前
魔幻冰棍发布了新的文献求助10
8秒前
8秒前
666eeerrr完成签到 ,获得积分10
8秒前
FashionBoy应助yaya采纳,获得10
9秒前
九闫祝发布了新的文献求助10
9秒前
Ly完成签到,获得积分10
9秒前
quhayley发布了新的文献求助10
9秒前
毕业大吉发布了新的文献求助20
9秒前
hll发布了新的文献求助10
9秒前
Hello应助RC_Wang采纳,获得10
10秒前
丘比特应助rlh采纳,获得10
10秒前
时尚的靖发布了新的文献求助10
11秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Fermented Coffee Market 2000
PARLOC2001: The update of loss containment data for offshore pipelines 500
Critical Thinking: Tools for Taking Charge of Your Learning and Your Life 4th Edition 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
Constitutional and Administrative Law 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5261822
求助须知:如何正确求助?哪些是违规求助? 4422960
关于积分的说明 13768092
捐赠科研通 4297447
什么是DOI,文献DOI怎么找? 2357968
邀请新用户注册赠送积分活动 1354348
关于科研通互助平台的介绍 1315454