清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

Identifying diverse metal oxide nanomaterials with lethal effects on embryonic zebrafish using machine learning

斑马鱼 纳米材料 纳米技术 氧化物 胚胎干细胞 材料科学 纳米毒理学 金属 化学 纳米颗粒 冶金 生物化学 基因
作者
Richard Liam Marchese Robinson,Haralambos Sarimveis,Philip Doganis,Xiaodong Jia,Marianna Kotzabasaki,Christiana Gousiadou,Stacey L. Harper,Terry Wilkins
出处
期刊:Beilstein Journal of Nanotechnology [Beilstein-Institut]
卷期号:12: 1297-1325 被引量:3
标识
DOI:10.3762/bjnano.12.97
摘要

Manufacturers of nanomaterial-enabled products need models of endpoints that are relevant to human safety to support the “safe by design” paradigm and avoid late-stage attrition. Increasingly, embryonic zebrafish ( Danio Rerio ) are recognised as a key human safety relevant in vivo test system. Hence, machine learning models were developed for identifying metal oxide nanomaterials causing lethality to embryonic zebrafish up to 24 hours post-fertilisation, or excess lethality in the period of 24–120 hours post-fertilisation, at concentrations of 250 ppm or less. Models were developed using data from the Nanomaterial Biological-Interactions Knowledgebase for a dataset of 44 diverse, coated and uncoated metal or, in one case, metalloid oxide nanomaterials. Different modelling approaches were evaluated using nested cross-validation on this dataset. Models were initially developed for both lethality endpoints using multiple descriptors representing the composition of the core, shell and surface functional groups, as well as particle characteristics. However, interestingly, the 24 hours post-fertilisation data were found to be harder to predict, which could reflect different exposure routes. Hence, subsequent analysis focused on the prediction of excess lethality at 120 hours-post fertilisation. The use of two data augmentation approaches, applied for the first time in nano-QSAR research, was explored, yet both failed to boost predictive performance. Interestingly, it was found that comparable results to those originally obtained using multiple descriptors could be obtained using a model based upon a single, simple descriptor: the Pauling electronegativity of the metal atom. Since it is widely recognised that a variety of intrinsic and extrinsic nanomaterial characteristics contribute to their toxicological effects, this is a surprising finding. This may partly reflect the need to investigate more sophisticated descriptors in future studies. Future studies are also required to examine how robust these modelling results are on truly external data, which were not used to select the single descriptor model. This will require further laboratory work to generate comparable data to those studied herein.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
自由的梦露完成签到 ,获得积分10
7秒前
Richard完成签到 ,获得积分10
1分钟前
薏仁完成签到 ,获得积分10
1分钟前
2分钟前
baixun完成签到 ,获得积分20
3分钟前
别疯完成签到,获得积分10
4分钟前
YifanWang应助科研通管家采纳,获得10
4分钟前
YifanWang应助科研通管家采纳,获得10
4分钟前
5分钟前
WSYang完成签到,获得积分10
5分钟前
紫熊发布了新的文献求助10
5分钟前
5分钟前
YifanWang应助科研通管家采纳,获得10
6分钟前
YifanWang应助科研通管家采纳,获得10
6分钟前
紫熊发布了新的文献求助20
6分钟前
6分钟前
研友_nxw2xL完成签到,获得积分10
8分钟前
muriel完成签到,获得积分10
8分钟前
8分钟前
Tttttttt完成签到,获得积分10
9分钟前
renxuda完成签到,获得积分10
9分钟前
renxuda发布了新的文献求助10
10分钟前
10分钟前
Jade张应助科研通管家采纳,获得20
10分钟前
Artin发布了新的文献求助50
11分钟前
bkagyin应助baixun采纳,获得30
11分钟前
Artin发布了新的文献求助50
11分钟前
Artin完成签到,获得积分10
12分钟前
12分钟前
baixun发布了新的文献求助30
12分钟前
lkk183完成签到 ,获得积分10
12分钟前
Jasen完成签到 ,获得积分10
14分钟前
妇产科医生完成签到 ,获得积分10
14分钟前
方白秋完成签到,获得积分10
17分钟前
HuiHui完成签到,获得积分10
17分钟前
沙海沉戈完成签到,获得积分0
18分钟前
1437594843完成签到 ,获得积分10
18分钟前
poki完成签到 ,获得积分10
19分钟前
紫熊完成签到,获得积分10
19分钟前
xun完成签到,获得积分10
20分钟前
高分求助中
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
Rechtsphilosophie 1000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
Le dégorgement réflexe des Acridiens 800
Defense against predation 800
XAFS for Everyone (2nd Edition) 600
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3134020
求助须知:如何正确求助?哪些是违规求助? 2784845
关于积分的说明 7768793
捐赠科研通 2440219
什么是DOI,文献DOI怎么找? 1297308
科研通“疑难数据库(出版商)”最低求助积分说明 624920
版权声明 600792