Identifying diverse metal oxide nanomaterials with lethal effects on embryonic zebrafish using machine learning

斑马鱼 纳米材料 纳米技术 氧化物 胚胎干细胞 材料科学 纳米毒理学 金属 化学 纳米颗粒 冶金 生物化学 基因
作者
Richard Marchese Robinson,Haralambos Sarimveis,Philip Doganis,Xiaodong Jia,Marianna Kotzabasaki,Christiana Gousiadou,Stacey L. Harper,Terry Wilkins
出处
期刊:Beilstein Journal of Nanotechnology [Beilstein Institute for the Advancement of Chemical Sciences]
卷期号:12: 1297-1325 被引量:4
标识
DOI:10.3762/bjnano.12.97
摘要

Manufacturers of nanomaterial-enabled products need models of endpoints that are relevant to human safety to support the “safe by design” paradigm and avoid late-stage attrition. Increasingly, embryonic zebrafish ( Danio Rerio ) are recognised as a key human safety relevant in vivo test system. Hence, machine learning models were developed for identifying metal oxide nanomaterials causing lethality to embryonic zebrafish up to 24 hours post-fertilisation, or excess lethality in the period of 24–120 hours post-fertilisation, at concentrations of 250 ppm or less. Models were developed using data from the Nanomaterial Biological-Interactions Knowledgebase for a dataset of 44 diverse, coated and uncoated metal or, in one case, metalloid oxide nanomaterials. Different modelling approaches were evaluated using nested cross-validation on this dataset. Models were initially developed for both lethality endpoints using multiple descriptors representing the composition of the core, shell and surface functional groups, as well as particle characteristics. However, interestingly, the 24 hours post-fertilisation data were found to be harder to predict, which could reflect different exposure routes. Hence, subsequent analysis focused on the prediction of excess lethality at 120 hours-post fertilisation. The use of two data augmentation approaches, applied for the first time in nano-QSAR research, was explored, yet both failed to boost predictive performance. Interestingly, it was found that comparable results to those originally obtained using multiple descriptors could be obtained using a model based upon a single, simple descriptor: the Pauling electronegativity of the metal atom. Since it is widely recognised that a variety of intrinsic and extrinsic nanomaterial characteristics contribute to their toxicological effects, this is a surprising finding. This may partly reflect the need to investigate more sophisticated descriptors in future studies. Future studies are also required to examine how robust these modelling results are on truly external data, which were not used to select the single descriptor model. This will require further laboratory work to generate comparable data to those studied herein.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Doloris完成签到,获得积分10
刚刚
acanacan完成签到,获得积分10
刚刚
超级晓蓝完成签到,获得积分10
刚刚
anan驳回了华仔应助
刚刚
GG完成签到,获得积分10
刚刚
jellorio完成签到,获得积分10
1秒前
炒饭发布了新的文献求助10
1秒前
2秒前
2秒前
2秒前
肥肥发布了新的文献求助10
3秒前
SciGPT应助科研通管家采纳,获得10
3秒前
3秒前
3秒前
乐乐应助科研通管家采纳,获得10
3秒前
wanci应助科研通管家采纳,获得10
3秒前
在水一方应助科研通管家采纳,获得10
3秒前
DD应助科研通管家采纳,获得10
3秒前
CipherSage应助科研通管家采纳,获得10
4秒前
卡卡西应助科研通管家采纳,获得30
4秒前
smottom应助科研通管家采纳,获得10
4秒前
1351567822应助科研通管家采纳,获得10
4秒前
丘比特应助科研通管家采纳,获得10
4秒前
Jasper应助科研通管家采纳,获得10
4秒前
4秒前
NexusExplorer应助科研通管家采纳,获得10
4秒前
CipherSage应助科研通管家采纳,获得10
4秒前
4秒前
4秒前
4秒前
小蘑菇应助科研通管家采纳,获得10
4秒前
脑洞疼应助科研通管家采纳,获得30
4秒前
lileilei完成签到,获得积分10
4秒前
天天快乐应助科研通管家采纳,获得10
4秒前
赘婿应助科研通管家采纳,获得10
4秒前
科研通AI2S应助科研通管家采纳,获得10
5秒前
5秒前
recardo完成签到,获得积分10
5秒前
寂寞的灵发布了新的文献求助10
5秒前
5秒前
高分求助中
Picture Books with Same-sex Parented Families: Unintentional Censorship 1000
A new approach to the extrapolation of accelerated life test data 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3978478
求助须知:如何正确求助?哪些是违规求助? 3522465
关于积分的说明 11213660
捐赠科研通 3259954
什么是DOI,文献DOI怎么找? 1799695
邀请新用户注册赠送积分活动 878604
科研通“疑难数据库(出版商)”最低求助积分说明 806987