光电流
分解水
化学
半导体
析氧
光电化学
光电化学电池
可逆氢电极
密度泛函理论
能量转换效率
电子转移
太阳能转换
光电子学
电极
纳米技术
化学物理
光化学
太阳能
催化作用
电解质
物理化学
计算化学
材料科学
电化学
工作电极
光催化
生物
生物化学
生态学
作者
Xiaomeng Zhang,Panlong Zhai,Yanxue Zhang,Yunzhen Wu,Chen Wang,Lei Ran,Junfeng Gao,Zhuwei Li,Bo Zhang,Zhaozhong Fan,Licheng Sun,Jungang Hou
摘要
Direct photoelectrochemical (PEC) water splitting is a promising solution for solar energy conversion; however, there is a pressing bottleneck to address the intrinsic charge transport for the enhancement of PEC performance. Herein, a versatile coupling strategy was developed to engineer atomically dispersed Ni-N4 sites coordinated with an axial direction oxygen atom (Ni-N4-O) incorporated between oxygen evolution cocatalyst (OEC) and semiconductor photoanode, boosting the photogenerated electron-hole separation and thus improving PEC activity. This state-of-the-art OEC/Ni-N4-O/BiVO4 photoanode exhibits a record high photocurrent density of 6.0 mA cm-2 at 1.23 V versus reversible hydrogen electrode (vs RHE), over approximately 3.97 times larger than that of BiVO4, achieving outstanding long-term photostability. From X-ray absorption fine structure analysis and density functional theory calculations, the enhanced PEC performance is attributed to the construction of single-atomic Ni-N4-O moiety in OEC/BiVO4, facilitating the holes transfer, decreasing the free energy barriers, and accelerating the reaction kinetics. This work enables us to develop an effective pathway to design and fabricate efficient and stable photoanodes for feasible PEC water splitting application.
科研通智能强力驱动
Strongly Powered by AbleSci AI