脱氢
丙烷
渗透
膜反应器
催化作用
反应速率
膜
化学
化学工程
甲烷
产量(工程)
材料科学
有机化学
复合材料
生物化学
工程类
作者
Shailesh Dangwal,Anil Ronte,Ghader Mahmodi,Payam Zarrintaj,Jong Suk Lee,Mohammad Reza Saeb,Heather Gappa‐Fahlenkamp,Seok‐Jhin Kim
出处
期刊:Energy & Fuels
[American Chemical Society]
日期:2021-11-11
卷期号:35 (23): 19362-19373
被引量:10
标识
DOI:10.1021/acs.energyfuels.1c02473
摘要
In this work, a silicalite membrane reactor was used for the propane dehydrogenation (PDH) reaction for different operating conditions such as 550–650 °C for temperature and 1–5 atm for pressure, respectively. Packed bed membrane reactors (PBMRs) were allowed to achieve higher performance than packed bed reactors, thereby overcoming thermodynamic limitations that are prevalent in dehydrogenation reactions. Removal of one of the reaction products (H2) during the reaction from the reaction side helped in improving PDH reaction performance of PBMR. Pt/Al2O3 catalysts were used with the silicalite membrane to explore the impact of operating conditions on the PDH reaction. Increasing reaction temperature accelerated the reaction rate, which led to an increase in propane conversion. Increasing reaction pressure led to an increase in H2 permeation across the membrane, which resulted in considerable improvement in the propane conversion. The highest propane conversion, propylene selectivity, and propylene yield achieved were 49, 97, and 47%, respectively, at 600 °C and 5 atm in the PBMR mode. The selective removal of H2 from the reaction side through the membrane was also found to significantly reduce the side products such as methane. A one-dimensional plug flow model was developed and found to work well for simulating the PDH reaction.
科研通智能强力驱动
Strongly Powered by AbleSci AI