Native Atomic Defects Manipulation for Enhancing the Electronic Transport Properties of Epitaxial SnTe Films

材料科学 外延 电子迁移率 基质(水族馆) 电子结构 原子单位 密度泛函理论 化学物理 纳米技术 光电子学 凝聚态物理 结晶学 计算化学 化学 物理 地质学 海洋学 量子力学 图层(电子)
作者
Fuqiang Hua,Pengfei Lv,Min Hong,Hongyao Xie,Min Zhang,Cheng Zhang,Wei Wang,Zhaohui Wang,Yong Liu,Yonggao Yan,Shengjun Yuan,Wei Liu,Xinfeng Tang
出处
期刊:ACS Applied Materials & Interfaces [American Chemical Society]
卷期号:13 (47): 56446-56455 被引量:4
标识
DOI:10.1021/acsami.1c15447
摘要

P-type SnTe-based compounds have attracted extensive attention because of their high thermoelectric performance. Previous studies have made tremendous efforts to investigate native atomic defects in SnTe-based compounds, but there has been no direct experimental evidence so far. On the basis of MBE, STM, ARPES, DFT calculations, and transport measurements, this work directly visualizes the dominant native atomic defects and clarifies an alternative optimization mechanism of electronic transport properties via defect engineering in epitaxially grown SnTe (111) films. Our findings prove that positively charged Sn vacancies (VSn) and negatively charged Sn interstitials (Sni) are the leading native atomic defects that dominate electronic transport in SnTe, in contrast to previous studies that only considered VSn. Increasing the substrate temperature (Tsub) and decreasing the Te/Sn flux ratio during film growth reduces the density of VSn while increasing the density of Sni. A high Tsub results in a low hole density and high carrier mobility in SnTe films. The SnTe film grown at Tsub = 593 K and Te/Sn = 2/1 achieves its highest power factor of 1.73 mW m-1 K-2 at 673 K, which is attributed to the optimized hole density of 2.27 × 1020 cm-3 and the increased carrier mobility of 85.6 cm2 V-1 s-1. Our experimental studies on the manipulation of native atomic defects can contribute to an increased understanding of the electronic transport properties of SnTe-based compounds.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
1秒前
上官若男应助三岁半采纳,获得10
1秒前
科研通AI5应助大观天下采纳,获得10
2秒前
zhangscience完成签到,获得积分10
2秒前
2秒前
爆米花应助YI_ZHOU_YU采纳,获得10
3秒前
传奇3应助深情的小笼包采纳,获得10
3秒前
ffx关闭了ffx文献求助
4秒前
5秒前
HS发布了新的文献求助10
5秒前
5秒前
zhangscience发布了新的文献求助10
6秒前
李健应助过噻采纳,获得30
6秒前
zpc完成签到,获得积分10
6秒前
蓝莲花发布了新的文献求助20
6秒前
充电宝应助殷勤的咖啡采纳,获得10
6秒前
6秒前
予青完成签到,获得积分10
7秒前
8秒前
wsnssbnhbx1发布了新的文献求助30
8秒前
小兔叽完成签到,获得积分10
8秒前
dingyn-2发布了新的文献求助10
11秒前
11秒前
12秒前
12秒前
12秒前
拾柒发布了新的文献求助10
12秒前
lijun发布了新的文献求助10
13秒前
13秒前
上官若男应助ach采纳,获得30
13秒前
14秒前
14秒前
15秒前
15秒前
15秒前
科研通AI5应助zanwu采纳,获得10
17秒前
高高旭尧发布了新的文献求助10
17秒前
大先生发布了新的文献求助10
17秒前
19秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Kelsen’s Legacy: Legal Normativity, International Law and Democracy 1000
Interest Rate Modeling. Volume 3: Products and Risk Management 600
Interest Rate Modeling. Volume 2: Term Structure Models 600
Dynamika przenośników łańcuchowych 600
Recent progress and new developments in post-combustion carbon-capture technology with reactive solvents 600
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3538560
求助须知:如何正确求助?哪些是违规求助? 3116348
关于积分的说明 9324702
捐赠科研通 2814124
什么是DOI,文献DOI怎么找? 1546485
邀请新用户注册赠送积分活动 720574
科研通“疑难数据库(出版商)”最低求助积分说明 712083