A Domain-Independent Generative Adversarial Network for Activity Recognition Using WiFi CSI Data

计算机科学 稳健性(进化) 活动识别 生成对抗网络 机器学习 人工智能 任务(项目管理) 手势 背景(考古学) 手势识别 生成语法 领域(数学分析) 深度学习 工程类 数学分析 古生物学 化学 系统工程 基因 生物 生物化学 数学
作者
Augustinas Zinys,Bram van Berlo,Nirvana Meratnia
出处
期刊:Sensors [MDPI AG]
卷期号:21 (23): 7852-7852 被引量:10
标识
DOI:10.3390/s21237852
摘要

Over the past years, device-free sensing has received considerable attention due to its unobtrusiveness. In this regard, context recognition using WiFi Channel State Information (CSI) data has gained popularity, and various techniques have been proposed that combine unobtrusive sensing and deep learning to accurately detect various contexts ranging from human activities to gestures. However, research has shown that the performance of these techniques significantly degrades due to change in various factors including sensing environment, data collection configuration, diversity of target subjects, and target learning task (e.g., activities, gestures, emotions, vital signs). This problem, generally known as the domain change problem, is typically addressed by collecting more data and learning the data distribution that covers multiple factors impacting the performance. However, activity recognition data collection is a very labor-intensive and time consuming task, and there are too many known and unknown factors impacting WiFi CSI signals. In this paper, we propose a domain-independent generative adversarial network for WiFi CSI based activity recognition in combination with a simplified data pre-processing module. Our evaluation results show superiority of our proposed approach compared to the state of the art in terms of increased robustness against domain change, higher accuracy of activity recognition, and reduced model complexity.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
xv完成签到,获得积分10
刚刚
唧唧完成签到,获得积分20
1秒前
1秒前
orixero应助psy采纳,获得30
2秒前
充电宝应助儒雅的威采纳,获得10
4秒前
CodeCraft应助菲菲采纳,获得10
5秒前
5秒前
毛豆应助QI采纳,获得10
6秒前
ZHANG完成签到 ,获得积分10
6秒前
Ecc完成签到 ,获得积分10
7秒前
hengwang发布了新的文献求助10
10秒前
青青子衿发布了新的文献求助10
12秒前
14秒前
小王发布了新的文献求助30
15秒前
15秒前
嗯哼应助科研通管家采纳,获得20
16秒前
汉堡包应助科研通管家采纳,获得10
16秒前
双黄应助科研通管家采纳,获得10
16秒前
斯文败类应助科研通管家采纳,获得10
16秒前
一一应助科研通管家采纳,获得10
16秒前
情怀应助科研通管家采纳,获得10
16秒前
Akim应助科研通管家采纳,获得10
16秒前
长河完成签到,获得积分20
17秒前
酷波er应助科研通管家采纳,获得10
17秒前
李爱国应助科研通管家采纳,获得10
17秒前
嗯哼应助科研通管家采纳,获得20
17秒前
双黄应助科研通管家采纳,获得10
17秒前
华仔应助科研通管家采纳,获得10
17秒前
嗯哼应助科研通管家采纳,获得20
17秒前
祖诗云应助科研通管家采纳,获得30
17秒前
852应助科研通管家采纳,获得10
17秒前
牧无声应助科研通管家采纳,获得200
17秒前
17秒前
和谐初南发布了新的文献求助10
18秒前
yolo发布了新的文献求助10
20秒前
jiangcai完成签到,获得积分10
23秒前
长河发布了新的文献求助10
24秒前
在水一方应助ll采纳,获得10
24秒前
杳鸢应助Trophyyy采纳,获得10
26秒前
i的问题发布了新的文献求助10
26秒前
高分求助中
Rock-Forming Minerals, Volume 3C, Sheet Silicates: Clay Minerals 2000
The late Devonian Standard Conodont Zonation 2000
Nickel superalloy market size, share, growth, trends, and forecast 2023-2030 2000
The Lali Section: An Excellent Reference Section for Upper - Devonian in South China 1500
The Healthy Socialist Life in Maoist China 600
The Vladimirov Diaries [by Peter Vladimirov] 600
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3267812
求助须知:如何正确求助?哪些是违规求助? 2907217
关于积分的说明 8341064
捐赠科研通 2577922
什么是DOI,文献DOI怎么找? 1401276
科研通“疑难数据库(出版商)”最低求助积分说明 655022
邀请新用户注册赠送积分活动 634046