Quantitative structure-retention relationship for reliable metabolite identification and quantification in metabolomics using ion-pair reversed-phase chromatography coupled with tandem mass spectrometry

化学 色谱法 代谢组学 代谢物 质谱法 串联质谱法 定量分析(化学) 保留时间 选择性反应监测 反相色谱法 液相色谱-质谱法 高效液相色谱法 生物化学
作者
Qingyu Hu,Yuting Sun,Peihong Yuan,Hehua Lei,Huiqin Zhong,Yulan Wang,Huiru Tang
出处
期刊:Talanta [Elsevier]
卷期号:238 (Pt 2): 123059-123059 被引量:24
标识
DOI:10.1016/j.talanta.2021.123059
摘要

Hydrophilic metabolites are essential for all biological systems with multiple functions and their quantitative analysis forms an important part of metabolomics. However, poor retention of these metabolites on reversed-phase (RP) chromatographic column hinders their effective analysis with RPLC-MS methods. Herein, we developed a method for detecting hydrophilic metabolites using the ion-pair reversed-phase liquid-chromatography coupled with mass spectrometry (IPRP-LC-MS/MS) in scheduled multiple-reaction-monitoring (sMRM) mode. We first developed a hexylamine-based IPRP-UHPLC-QTOFMS method and experimentally measured retention time (tR) for 183 hydrophilic metabolites. We found that tRs of these metabolites were dominated by their electrostatic potential depending upon the numbers and types of their ionizable groups. We then systematically investigated the quantitative structure-retention relationship (QSRR) and constructed QSRR models using the measured tR. Subsequently, we developed a retention time predictive model using the random-forest regression algorithm (r2 = 0.93, q2 = 0.70, MAE = 1.28 min) for predicting metabolite retention time, which was applied in IPRP-UHPLC-MS/MS method in sMRM mode for quantitative metabolomic analysis. Our method can simultaneously quantify more than 260 metabolites. Moreover, we found that this method was applicable for multiple major biological matrices including biofluids and tissues. This approach offers an efficient method for large-scale quantitative hydrophilic metabolomic profiling even when metabolite standards are unavailable.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
敬业乐群发布了新的文献求助10
刚刚
123完成签到,获得积分10
1秒前
天阳发布了新的文献求助10
1秒前
斯文败类应助百羊采纳,获得10
1秒前
lang发布了新的文献求助10
1秒前
1秒前
2秒前
2秒前
爆米花应助科研通管家采纳,获得10
2秒前
李健应助科研通管家采纳,获得10
2秒前
Liyi发布了新的文献求助10
2秒前
今后应助科研通管家采纳,获得10
2秒前
Lny应助科研通管家采纳,获得10
3秒前
3秒前
3秒前
3秒前
3秒前
彭于晏应助科研通管家采纳,获得10
3秒前
Lassinco发布了新的文献求助10
3秒前
3秒前
meng完成签到,获得积分20
3秒前
3秒前
科目三应助科研通管家采纳,获得30
3秒前
无极微光应助白色的明镜采纳,获得30
4秒前
Levieus完成签到,获得积分10
4秒前
4秒前
jiang应助科研通管家采纳,获得10
4秒前
完美世界应助殷勤的学姐采纳,获得10
4秒前
4秒前
qikkk应助美满的小白菜采纳,获得10
4秒前
科研通AI2S应助科研通管家采纳,获得10
4秒前
丘比特应助姜月采纳,获得10
4秒前
上官若男应助wzhnb采纳,获得10
4秒前
4秒前
4秒前
思源应助科研通管家采纳,获得10
5秒前
秋空完成签到,获得积分10
5秒前
5秒前
爆米花应助科研通管家采纳,获得10
5秒前
李爱国应助科研通管家采纳,获得10
5秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Quaternary Science Reference Third edition 6000
Encyclopedia of Forensic and Legal Medicine Third Edition 5000
Introduction to strong mixing conditions volume 1-3 5000
Aerospace Engineering Education During the First Century of Flight 3000
Agyptische Geschichte der 21.30. Dynastie 3000
Les Mantodea de guyane 2000
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5784063
求助须知:如何正确求助?哪些是违规求助? 5680443
关于积分的说明 15462954
捐赠科研通 4913367
什么是DOI,文献DOI怎么找? 2644620
邀请新用户注册赠送积分活动 1592452
关于科研通互助平台的介绍 1547078