Quantitative structure-retention relationship for reliable metabolite identification and quantification in metabolomics using ion-pair reversed-phase chromatography coupled with tandem mass spectrometry

化学 色谱法 代谢组学 代谢物 质谱法 串联质谱法 定量分析(化学) 保留时间 选择性反应监测 反相色谱法 液相色谱-质谱法 高效液相色谱法 生物化学
作者
Qingyu Hu,Yuting Sun,Peihong Yuan,Hehua Lei,Huiqin Zhong,Yulan Wang,Huiru Tang
出处
期刊:Talanta [Elsevier]
卷期号:238: 123059-123059 被引量:16
标识
DOI:10.1016/j.talanta.2021.123059
摘要

Hydrophilic metabolites are essential for all biological systems with multiple functions and their quantitative analysis forms an important part of metabolomics. However, poor retention of these metabolites on reversed-phase (RP) chromatographic column hinders their effective analysis with RPLC-MS methods. Herein, we developed a method for detecting hydrophilic metabolites using the ion-pair reversed-phase liquid-chromatography coupled with mass spectrometry (IPRP-LC-MS/MS) in scheduled multiple-reaction-monitoring (sMRM) mode. We first developed a hexylamine-based IPRP-UHPLC-QTOFMS method and experimentally measured retention time (tR) for 183 hydrophilic metabolites. We found that tRs of these metabolites were dominated by their electrostatic potential depending upon the numbers and types of their ionizable groups. We then systematically investigated the quantitative structure-retention relationship (QSRR) and constructed QSRR models using the measured tR. Subsequently, we developed a retention time predictive model using the random-forest regression algorithm (r2 = 0.93, q2 = 0.70, MAE = 1.28 min) for predicting metabolite retention time, which was applied in IPRP-UHPLC-MS/MS method in sMRM mode for quantitative metabolomic analysis. Our method can simultaneously quantify more than 260 metabolites. Moreover, we found that this method was applicable for multiple major biological matrices including biofluids and tissues. This approach offers an efficient method for large-scale quantitative hydrophilic metabolomic profiling even when metabolite standards are unavailable.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
淡然的从波完成签到,获得积分20
2秒前
淡淡的若冰应助写论文采纳,获得10
3秒前
4秒前
8R60d8应助科研通管家采纳,获得10
5秒前
Hello应助科研通管家采纳,获得10
5秒前
JamesPei应助科研通管家采纳,获得30
5秒前
隐形曼青应助科研通管家采纳,获得10
5秒前
充电宝应助科研通管家采纳,获得10
6秒前
fifteen应助科研通管家采纳,获得10
6秒前
星光完成签到,获得积分10
18秒前
祁郁郁发布了新的文献求助10
20秒前
23秒前
青出于蓝蔡完成签到,获得积分10
24秒前
jjx1005完成签到 ,获得积分10
25秒前
优美的冰巧完成签到 ,获得积分10
25秒前
lurun完成签到,获得积分10
26秒前
天天快乐应助星星草采纳,获得10
26秒前
28秒前
28秒前
棋棋233发布了新的文献求助30
28秒前
SciGPT应助知性的幻巧采纳,获得10
28秒前
Yziii应助大意的凝芙采纳,获得20
28秒前
SCI1区完成签到 ,获得积分10
29秒前
melon完成签到,获得积分10
31秒前
丘比特应助laola采纳,获得10
31秒前
thisky完成签到,获得积分10
31秒前
单身的钧完成签到,获得积分10
32秒前
领导范儿应助捕风的栗子采纳,获得10
32秒前
bsgmsf应助史娣采纳,获得30
33秒前
melon发布了新的文献求助10
34秒前
困敦发布了新的文献求助10
34秒前
顾台发布了新的文献求助10
35秒前
棋棋233完成签到,获得积分10
35秒前
Tina完成签到 ,获得积分10
36秒前
36秒前
Singularity应助祁郁郁采纳,获得10
36秒前
可爱的函函应助虞雅柏采纳,获得10
37秒前
Chenzhs发布了新的文献求助10
37秒前
40秒前
草原狼发布了新的文献求助10
41秒前
高分求助中
The late Devonian Standard Conodont Zonation 2000
Nickel superalloy market size, share, growth, trends, and forecast 2023-2030 2000
The Lali Section: An Excellent Reference Section for Upper - Devonian in South China 1500
Smart but Scattered: The Revolutionary Executive Skills Approach to Helping Kids Reach Their Potential (第二版) 1000
Very-high-order BVD Schemes Using β-variable THINC Method 830
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 800
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 800
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3247643
求助须知:如何正确求助?哪些是违规求助? 2890926
关于积分的说明 8265341
捐赠科研通 2559198
什么是DOI,文献DOI怎么找? 1387913
科研通“疑难数据库(出版商)”最低求助积分说明 650670
邀请新用户注册赠送积分活动 627495