Quantitative structure-retention relationship for reliable metabolite identification and quantification in metabolomics using ion-pair reversed-phase chromatography coupled with tandem mass spectrometry

化学 色谱法 代谢组学 代谢物 质谱法 串联质谱法 定量分析(化学) 保留时间 选择性反应监测 反相色谱法 液相色谱-质谱法 高效液相色谱法 生物化学
作者
Qingyu Hu,Yuting Sun,Peihong Yuan,Hehua Lei,Huiqin Zhong,Yulan Wang,Huiru Tang
出处
期刊:Talanta [Elsevier]
卷期号:238 (Pt 2): 123059-123059 被引量:24
标识
DOI:10.1016/j.talanta.2021.123059
摘要

Hydrophilic metabolites are essential for all biological systems with multiple functions and their quantitative analysis forms an important part of metabolomics. However, poor retention of these metabolites on reversed-phase (RP) chromatographic column hinders their effective analysis with RPLC-MS methods. Herein, we developed a method for detecting hydrophilic metabolites using the ion-pair reversed-phase liquid-chromatography coupled with mass spectrometry (IPRP-LC-MS/MS) in scheduled multiple-reaction-monitoring (sMRM) mode. We first developed a hexylamine-based IPRP-UHPLC-QTOFMS method and experimentally measured retention time (tR) for 183 hydrophilic metabolites. We found that tRs of these metabolites were dominated by their electrostatic potential depending upon the numbers and types of their ionizable groups. We then systematically investigated the quantitative structure-retention relationship (QSRR) and constructed QSRR models using the measured tR. Subsequently, we developed a retention time predictive model using the random-forest regression algorithm (r2 = 0.93, q2 = 0.70, MAE = 1.28 min) for predicting metabolite retention time, which was applied in IPRP-UHPLC-MS/MS method in sMRM mode for quantitative metabolomic analysis. Our method can simultaneously quantify more than 260 metabolites. Moreover, we found that this method was applicable for multiple major biological matrices including biofluids and tissues. This approach offers an efficient method for large-scale quantitative hydrophilic metabolomic profiling even when metabolite standards are unavailable.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
1秒前
1秒前
先生范发布了新的文献求助10
2秒前
寒树发布了新的文献求助10
2秒前
xjn完成签到,获得积分10
2秒前
3秒前
CCC完成签到,获得积分10
3秒前
Jasper应助医院的孩子采纳,获得10
4秒前
nchudddd发布了新的文献求助10
4秒前
5秒前
hzh666完成签到,获得积分20
5秒前
王敬顺发布了新的文献求助10
5秒前
xx1发布了新的文献求助10
5秒前
Artin_Sun完成签到,获得积分10
8秒前
8秒前
华仔应助岳维芸采纳,获得10
8秒前
烟花应助岳维芸采纳,获得10
8秒前
yiyi完成签到,获得积分20
9秒前
杨二锤发布了新的文献求助10
9秒前
10秒前
10秒前
所所应助张巨锋采纳,获得10
11秒前
蓝天应助科研通管家采纳,获得10
11秒前
SciGPT应助科研通管家采纳,获得10
11秒前
李健应助科研通管家采纳,获得10
11秒前
11秒前
Wind应助科研通管家采纳,获得10
11秒前
11秒前
情怀应助科研通管家采纳,获得10
11秒前
litt应助科研通管家采纳,获得10
11秒前
11秒前
香蕉诗蕊应助科研通管家采纳,获得10
11秒前
大个应助科研通管家采纳,获得10
11秒前
香蕉诗蕊应助科研通管家采纳,获得10
11秒前
爆米花应助科研通管家采纳,获得10
11秒前
11秒前
李健的小迷弟应助金肆采纳,获得10
12秒前
11发布了新的文献求助10
13秒前
量子星尘发布了新的文献求助10
13秒前
高分求助中
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 12000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Russian Foreign Policy: Change and Continuity 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5695186
求助须知:如何正确求助?哪些是违规求助? 5100843
关于积分的说明 15215623
捐赠科研通 4851627
什么是DOI,文献DOI怎么找? 2602586
邀请新用户注册赠送积分活动 1554228
关于科研通互助平台的介绍 1512233