基因敲除
化学
免疫印迹
基因沉默
细胞生物学
细胞凋亡
SMAD公司
分子生物学
细胞生长
癌症研究
生物
转化生长因子
生物化学
基因
作者
Wang Hua-jun,Guangying Zheng
标识
DOI:10.1016/j.bbrc.2021.09.082
摘要
The cause of posterior capsular opacification (PCO) is the dysfunction of lens epithelial cells (LECs). Circular RNA (circRNA) was found to regulate cell biological functions, including LECs. However, the role of circ-GGA3 in PCO formation is unclear. Quantitative real-time PCR was used to measure the expression of circ-GGA3, miR-497-5p and SMAD4. Cell proliferation, invasion and migration were determined via MTT assay, EdU staining, transwell assay and wound healing assay. The protein expression of epithelial-mesenchymal transition (EMT) markers, fibrosis markers, TGF-β/SMAD pathway markers and SMAD4 were determined by western blot assay. The interaction between miR-497-5p and circ-GGA3 or SMAD4 was confirmed using dual-luciferase reporter assay. Circ-GGA3 was highly expressed in PCO patients, and its silencing inhibited the proliferation, invasion, migration, EMT process and fibrosis of TGF-β2-induced LECs. Circ-GGA3 could sponge miR-497-5p to regulate SMAD4. Further experiments revealed that miR-497-5p inhibitor recovered the negative regulation of circ-GGA3 knockdown on the biological functions of TGF-β2-induced LECs, and SMAD4 overexpression also abolished the suppressive effect of miR-497-5p. In addition, circ-GGA3/miR-497-5p/SMAD4 axis could activate the TGF-β/SMAD pathway. Our results indicated that circ-GGA3 could enhance the biological functions of LECs, suggesting that circ-GGA3 might be a potential target for PCO therapy.
科研通智能强力驱动
Strongly Powered by AbleSci AI