A Policy-Based Reinforcement Learning Approach for High-Speed Railway Timetable Rescheduling

计算机科学 强化学习 过程(计算) 马尔可夫过程 实时计算 增强学习 火车 北京 调度(生产过程) 运筹学 地铁列车时刻表 任务(项目管理) 数学优化 马尔可夫决策过程 钢筋 人工智能 工程类 运营管理 操作系统 统计 中国 法学 系统工程 地理 地图学 数学 政治学
作者
Yin Wang,Yisheng Lv,Jianying Zhou,Zhiming Yuan,Qi Zhang,Min Zhou
出处
期刊:International Conference on Intelligent Transportation Systems 被引量:1
标识
DOI:10.1109/itsc48978.2021.9564980
摘要

In the daily management of high-speed railway systems, the train timetable rescheduling problem with unpredictable disturbances is a challenging task. The large number of stations and trains leads to a long-time consumption to solve the rescheduling problem, making it difficult to meet the realtime requirements in real-world railway networks. This paper proposes a policy-based reinforcement learning approach to address the high-speed railway timetable rescheduling problem, in which the agent minimizes the total delay by adjusting the departure sequence of all trains along the railway line. A two-stage Markov Decision Process model is established to model the environment where states, actions, and reward functions are designed. The proposed method contains an offline learning process and an online application process, which can give the optimal rescheduling schedule based on the current state immediately. Numerical experiments are performed over two different delay scenarios on the Beijing-Shanghai high-speed railway line. The simulation results show that our approach can find a high-quality rescheduling strategy within one second, which is superior to the First-Come-First-Served (FCFS) and First-Scheduled-First-Served (FSFS) methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
CipherSage应助zero_sky采纳,获得10
刚刚
zz完成签到,获得积分10
1秒前
1秒前
小马甲应助研友_LOoomL采纳,获得10
1秒前
4秒前
6秒前
Owen应助寡王一路硕博采纳,获得10
6秒前
bkagyin应助reset采纳,获得10
9秒前
Frieren完成签到 ,获得积分10
9秒前
10秒前
斯文败类应助T拐拐采纳,获得10
10秒前
完美世界应助拼搏的绿旋采纳,获得10
10秒前
清欢发布了新的文献求助10
13秒前
13秒前
mao完成签到,获得积分10
14秒前
14秒前
16秒前
Jasper应助科研通管家采纳,获得30
16秒前
坚强亦丝应助科研通管家采纳,获得10
16秒前
科目三应助科研通管家采纳,获得10
16秒前
小马甲应助科研通管家采纳,获得10
16秒前
NexusExplorer应助科研通管家采纳,获得10
16秒前
17秒前
Ava应助科研通管家采纳,获得10
17秒前
汉堡包应助科研通管家采纳,获得10
17秒前
共享精神应助科研通管家采纳,获得10
17秒前
英姑应助科研通管家采纳,获得30
17秒前
传奇3应助科研通管家采纳,获得10
17秒前
我是老大应助科研通管家采纳,获得20
17秒前
完美世界应助科研通管家采纳,获得10
17秒前
情怀应助科研通管家采纳,获得10
17秒前
CodeCraft应助科研通管家采纳,获得10
17秒前
桐桐应助科研通管家采纳,获得10
17秒前
CodeCraft应助科研通管家采纳,获得10
17秒前
JamesPei应助无限尔竹采纳,获得10
17秒前
科研通AI2S应助科研通管家采纳,获得10
17秒前
大模型应助研友_xnEOX8采纳,获得10
17秒前
坚强亦丝应助科研通管家采纳,获得10
17秒前
大模型应助科研通管家采纳,获得10
17秒前
enterdawn应助科研通管家采纳,获得10
18秒前
高分求助中
Rock-Forming Minerals, Volume 3C, Sheet Silicates: Clay Minerals 2000
The late Devonian Standard Conodont Zonation 2000
Nickel superalloy market size, share, growth, trends, and forecast 2023-2030 2000
The Lali Section: An Excellent Reference Section for Upper - Devonian in South China 1500
The Healthy Socialist Life in Maoist China 600
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
Keywords: explanatory textual sequences, motivation, self-determination, academic performance, math, artificial intelligence 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3267506
求助须知:如何正确求助?哪些是违规求助? 2906911
关于积分的说明 8340161
捐赠科研通 2577520
什么是DOI,文献DOI怎么找? 1401068
科研通“疑难数据库(出版商)”最低求助积分说明 654998
邀请新用户注册赠送积分活动 633947