A large‐scale transcriptome‐wide association study (TWAS) of 10 blood cell phenotypes reveals complexities of TWAS fine‐mapping

全基因组关联研究 遗传关联 生物 计算生物学 生命银行 多基因 数量性状位点 特质 表型 遗传学 转录组 表达数量性状基因座 基因 基因型 单核苷酸多态性 基因表达 计算机科学 程序设计语言
作者
Amanda L. Tapia,Bryce Rowland,Jonathan D. Rosen,Michael Preuss,Kris Young,Misa Graff,Hélène Choquet,David Couper,Steven Buyske,Stephanie A. Bien,Eric Jorgenson,Charles Kooperberg,Ruth J. F. Loos,Alanna C. Morrison,Kari E. North,Bing Yu,Alexander P. Reiner,Yun Li,Laura M. Raffield
出处
期刊:Genetic Epidemiology [Wiley]
卷期号:46 (1): 3-16 被引量:3
标识
DOI:10.1002/gepi.22436
摘要

Abstract Hematological measures are important intermediate clinical phenotypes for many acute and chronic diseases and are highly heritable. Although genome‐wide association studies (GWAS) have identified thousands of loci containing trait‐associated variants, the causal genes underlying these associations are often uncertain. To better understand the underlying genetic regulatory mechanisms, we performed a transcriptome‐wide association study (TWAS) to systematically investigate the association between genetically predicted gene expression and hematological measures in 54,542 Europeans from the Genetic Epidemiology Research on Aging cohort. We found 239 significant gene‐trait associations with hematological measures; we replicated 71 associations at p < 0.05 in a TWAS meta‐analysis consisting of up to 35,900 Europeans from the Women's Health Initiative, Atherosclerosis Risk in Communities Study, and BioMe Biobank. Additionally, we attempted to refine this list of candidate genes by performing conditional analyses, adjusting for individual variants previously associated with hematological measures, and performed further fine‐mapping of TWAS loci. To facilitate interpretation of our findings, we designed an R Shiny application to interactively visualize our TWAS results by integrating them with additional genetic data sources (GWAS, TWAS from multiple reference panels, conditional analyses, known GWAS variants, etc.). Our results and application highlight frequently overlooked TWAS challenges and illustrate the complexity of TWAS fine‐mapping.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
1234发布了新的文献求助10
2秒前
3秒前
3秒前
3秒前
4秒前
qiuqiu120234978完成签到,获得积分10
5秒前
123完成签到,获得积分20
5秒前
酷炫的秋凌完成签到 ,获得积分10
6秒前
6秒前
上官若男应助科研通管家采纳,获得10
6秒前
情怀应助科研通管家采纳,获得10
6秒前
小马甲应助科研通管家采纳,获得10
6秒前
科目三应助科研通管家采纳,获得10
7秒前
7秒前
小纯洁发布了新的文献求助10
7秒前
酷波er应助科研通管家采纳,获得10
7秒前
Ava应助科研通管家采纳,获得10
7秒前
充电宝应助科研通管家采纳,获得10
7秒前
Singularity应助科研通管家采纳,获得10
7秒前
汉堡包应助科研通管家采纳,获得10
7秒前
7秒前
8秒前
8秒前
123发布了新的文献求助10
9秒前
认真的AG完成签到,获得积分10
9秒前
CodeCraft应助健忘天问采纳,获得10
9秒前
10秒前
华仔应助lee采纳,获得10
10秒前
清风明月发布了新的文献求助10
10秒前
11秒前
左悬月发布了新的文献求助10
11秒前
小书虫发布了新的文献求助10
12秒前
叮叮发布了新的文献求助10
12秒前
爱学习的小学生完成签到,获得积分10
12秒前
Hello应助包容的剑采纳,获得10
12秒前
13秒前
YaN完成签到 ,获得积分10
13秒前
14秒前
坦率的寻凝完成签到,获得积分10
14秒前
高分求助中
Evolution 10000
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Foreign Policy of the French Second Empire: A Bibliography 500
Chen Hansheng: China’s Last Romantic Revolutionary 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3146272
求助须知:如何正确求助?哪些是违规求助? 2797641
关于积分的说明 7825012
捐赠科研通 2454032
什么是DOI,文献DOI怎么找? 1305957
科研通“疑难数据库(出版商)”最低求助积分说明 627630
版权声明 601503