Insight into the structure-capacity relationship in biomass derived carbon for high-performance sodium-ion batteries

阳极 杂原子 材料科学 电化学 化学工程 碳纤维 吸附 插层(化学) 兴奋剂 电导率 生物量(生态学) 离子 无机化学 电极 化学 复合数 复合材料 物理化学 有机化学 光电子学 戒指(化学) 工程类 地质学 冶金 海洋学
作者
Jianguo Sun,Yao Sun,Jin An Sam Oh,Qilin Gu,Weidong Zheng,Min Hao Goh,Kaiyang Zeng,Yuan Cheng,Li Lü
出处
期刊:Journal of Energy Chemistry [Elsevier]
卷期号:62: 497-504 被引量:43
标识
DOI:10.1016/j.jechem.2021.04.009
摘要

Carbonaceous materials are the most promising candidates as the anode for sodium-ion batteries (SIBs), however, they still suffer from low electric conductivity and sluggish sodium ion (Na+) reaction kinetics. Appropriate composition modulation using heteroatoms doping and structure optimization is highly desired. A basic empirical understanding of the structure-capacity relationship is also urgent in tackling the above problems. Herein, multi-functional nitrogen (N) doped carbon micro-rods with enlarged interlayer spacing are synthesized and investigated as the anode in SIBs, showing an ultra-stable capacity of 161.5 mAh g−1 at 2 A g−1 for over 5000 cycles. Experimental investigations and first-principle calculations indicate that the enlarged interlayer spacing can facilitate Na+ intercalation and N doping can guarantee the high electric conductivity and favorable electrochemical active sites. Additionally, pyridinic N is theoretically proved to be more effective to enhance Na+ adsorption than pyrrolic N due to the lower adsorption energy and stronger binding energy with Na+. Full SIBs show a high capacity and cyclability, making the biomass-derived carbon micro-rods to be a promising anode for practical SIBs applications.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Blue_Pig发布了新的文献求助10
1秒前
李健的小迷弟应助逐风采纳,获得30
1秒前
yatou5651发布了新的文献求助10
2秒前
Akim应助和谐乌龟采纳,获得10
2秒前
peng完成签到,获得积分20
3秒前
CipherSage应助汉关采纳,获得10
3秒前
4秒前
4秒前
4秒前
丘比特应助XM采纳,获得10
4秒前
bkagyin应助Blue_Pig采纳,获得10
5秒前
6秒前
7秒前
7秒前
完美世界应助加油加油采纳,获得10
8秒前
8秒前
9秒前
ns发布了新的文献求助30
11秒前
11111发布了新的文献求助10
11秒前
12秒前
药学牛马完成签到,获得积分10
12秒前
张zi发布了新的文献求助10
13秒前
yatou5651发布了新的文献求助10
14秒前
14秒前
小魏不学无术完成签到,获得积分10
14秒前
木棉发布了新的文献求助10
14秒前
A1234发布了新的文献求助10
15秒前
英俊的铭应助弄井采纳,获得30
15秒前
小二郎应助Dean采纳,获得10
16秒前
故意的冰淇淋完成签到 ,获得积分10
16秒前
16秒前
远方完成签到,获得积分10
17秒前
kiminonawa完成签到,获得积分0
18秒前
zrz完成签到,获得积分10
18秒前
19秒前
传奇3应助morlison采纳,获得10
19秒前
22秒前
22秒前
23秒前
24秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527928
求助须知:如何正确求助?哪些是违规求助? 3108040
关于积分的说明 9287614
捐赠科研通 2805836
什么是DOI,文献DOI怎么找? 1540070
邀请新用户注册赠送积分活动 716904
科研通“疑难数据库(出版商)”最低求助积分说明 709808