A deep reinforcement learning approach for the meal delivery problem

马尔可夫决策过程 强化学习 计算机科学 运筹学 订单(交换) 服务(商务) 集合(抽象数据类型) 过程(计算) 马尔可夫过程 多样性(控制论) 人工智能 营销 业务 工程类 统计 数学 财务 操作系统 程序设计语言
作者
Hadi Jahanshahi,Aysun Bozanta,Mücahit Çevik,Eray Mert Kavuk,Ayşe Tosun,Sibel B. Sonuç,Bilgin Kosucu,Ayşe Bener
出处
期刊:Knowledge Based Systems [Elsevier]
卷期号:243: 108489-108489 被引量:37
标识
DOI:10.1016/j.knosys.2022.108489
摘要

We consider a meal delivery service fulfilling dynamic customer requests given a set of couriers over the course of a day. A courier's duty is to pick-up an order from a restaurant and deliver it to a customer. We model this service as a Markov decision process and use deep reinforcement learning as the solution approach. We experiment with the resulting policies on synthetic and real-world datasets and compare those with the baseline policies. We also examine the courier utilization for different numbers of couriers. In our analysis, we specifically focus on the impact of the limited available resources in the meal delivery problem. Furthermore, we investigate the effect of intelligent order rejection and re-positioning of the couriers. Our numerical experiments show that, by incorporating the geographical locations of the restaurants, customers, and the depot, our model significantly improves the overall service quality as characterized by the expected total reward and the delivery times. Our results present valuable insights on both the courier assignment process and the optimal number of couriers for different order frequencies on a given day. The proposed model also shows a robust performance under a variety of scenarios for real-world implementation.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
2秒前
冷艳芷蕾完成签到,获得积分20
2秒前
2秒前
共享精神应助丙二醇采纳,获得10
2秒前
WW完成签到,获得积分10
2秒前
3秒前
zzz发布了新的文献求助20
3秒前
3秒前
欢喜白梅发布了新的文献求助10
4秒前
曹7发布了新的文献求助30
5秒前
6秒前
6秒前
6秒前
6秒前
6秒前
8秒前
memter发布了新的文献求助10
8秒前
小飞七应助zhao采纳,获得10
8秒前
Dandanhuang完成签到,获得积分10
8秒前
科研通AI5应助欢喜白梅采纳,获得10
9秒前
化工牛马发布了新的文献求助10
9秒前
小鞠发布了新的文献求助10
9秒前
才下眉头发布了新的文献求助10
9秒前
9秒前
9秒前
10秒前
10秒前
科研通AI5应助178181采纳,获得10
11秒前
11秒前
11秒前
11秒前
12秒前
雪茶发布了新的文献求助10
12秒前
搜集达人应助单纯的黄蜂采纳,获得10
13秒前
13秒前
华青ww完成签到,获得积分10
13秒前
14秒前
15秒前
喜悦松完成签到,获得积分10
15秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Mechanistic Modeling of Gas-Liquid Two-Phase Flow in Pipes 2500
Kelsen’s Legacy: Legal Normativity, International Law and Democracy 1000
Conference Record, IAS Annual Meeting 1977 610
Interest Rate Modeling. Volume 3: Products and Risk Management 600
Interest Rate Modeling. Volume 2: Term Structure Models 600
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3542524
求助须知:如何正确求助?哪些是违规求助? 3119774
关于积分的说明 9340737
捐赠科研通 2817742
什么是DOI,文献DOI怎么找? 1549232
邀请新用户注册赠送积分活动 722060
科研通“疑难数据库(出版商)”最低求助积分说明 712928