Resource-Efficient Federated Learning with Hierarchical Aggregation in Edge Computing

边缘设备 联合学习 资源配置 资源(消歧) 可扩展性 服务器
作者
Zhiyuan Wang,Hongli Xu,Jianchun Liu,He Huang,Chunming Qiao,Yangming Zhao
出处
期刊:International Conference on Computer Communications 卷期号:: 1-10
标识
DOI:10.1109/infocom42981.2021.9488756
摘要

Federated learning (FL) has emerged in edge computing to address limited bandwidth and privacy concerns of traditional cloud-based centralized training. However, the existing FL mechanisms may lead to long training time and consume a tremendous amount of communication resources. In this paper, we propose an efficient FL mechanism, which divides the edge nodes into K clusters by balanced clustering. The edge nodes in one cluster forward their local updates to cluster header for aggregation by synchronous method, called cluster aggregation, while all cluster headers perform the asynchronous method for global aggregation. This processing procedure is called hierarchical aggregation. Our analysis shows that the convergence bound depends on the number of clusters and the training epochs. We formally define the resource-efficient federated learning with hierarchical aggregation (RFL-HA) problem. We propose an efficient algorithm to determine the optimal cluster structure (i.e., the optimal value of K) with resource constraints and extend it to deal with the dynamic network conditions. Extensive simulation results obtained from our study for different models and datasets show that the proposed algorithms can reduce completion time by 34.8%-70% and the communication resource by 33.8%-56.5% while achieving a similar accuracy, compared with the well-known FL mechanisms.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
bbdx发布了新的文献求助10
刚刚
刚刚
Xx发布了新的文献求助10
刚刚
陈哈哈完成签到,获得积分10
刚刚
田様应助爱听歌的明轩采纳,获得10
刚刚
1秒前
Akim应助kiyo_v采纳,获得10
1秒前
2秒前
2秒前
3秒前
4秒前
彩色映雁发布了新的文献求助10
6秒前
Xx完成签到,获得积分10
6秒前
称心寒松发布了新的文献求助10
6秒前
7秒前
啊大大完成签到,获得积分10
8秒前
8秒前
8秒前
8秒前
pct发布了新的文献求助10
8秒前
just do it发布了新的文献求助10
9秒前
11秒前
明亮无颜发布了新的文献求助10
13秒前
溶脂发布了新的文献求助10
13秒前
zhoujunjie完成签到,获得积分10
13秒前
Silence完成签到 ,获得积分10
15秒前
ganluren完成签到,获得积分10
15秒前
treasure23完成签到 ,获得积分10
16秒前
俏皮的大象应助赵文若采纳,获得10
16秒前
FashionBoy应助gg采纳,获得10
16秒前
18秒前
震动的小松鼠完成签到,获得积分10
18秒前
笨狗读书发布了新的文献求助30
19秒前
脑洞疼应助123采纳,获得10
19秒前
刘大年完成签到,获得积分10
19秒前
20秒前
nml完成签到,获得积分10
22秒前
23秒前
李爱国应助yuzao采纳,获得10
23秒前
Cold发布了新的文献求助10
23秒前
高分求助中
All the Birds of the World 4000
Production Logging: Theoretical and Interpretive Elements 3000
Animal Physiology 2000
Les Mantodea de Guyane Insecta, Polyneoptera 2000
Am Rande der Geschichte : mein Leben in China / Ruth Weiss 1500
CENTRAL BOOKS: A BRIEF HISTORY 1939 TO 1999 by Dave Cope 1000
Machine Learning Methods in Geoscience 1000
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3740937
求助须知:如何正确求助?哪些是违规求助? 3283720
关于积分的说明 10036381
捐赠科研通 3000455
什么是DOI,文献DOI怎么找? 1646510
邀请新用户注册赠送积分活动 783711
科研通“疑难数据库(出版商)”最低求助积分说明 750427