Optimum wavelet selection for nonparametric analysis toward structural health monitoring for processing big data from sensor network: A comparative study

小波 数据挖掘 计算机科学 结构健康监测 人工智能 数据处理 模式识别(心理学) 小波变换 工程类 结构工程 操作系统
作者
Ahmed Silik,Mohammad Noori,Wael A. Altabey,Ji Dang,Ramin Ghiasi,Zhishen Wu
出处
期刊:Structural Health Monitoring-an International Journal [SAGE]
卷期号:21 (3): 803-825 被引量:46
标识
DOI:10.1177/14759217211010261
摘要

A critical problem encountered in structural health monitoring of civil engineering structures, and other structures such as mechanical or aircraft structures, is how to convincingly analyze the nonstationary data that is coming online, how to reduce the high-dimensional features, and how to extract informative features associated with damage to infer structural conditions. Wavelet transform among other techniques has proven to be an effective technique for processing and analyzing nonstationary data due to its unique characteristics. However, the biggest challenge frequently encountered in assuring the effectiveness of wavelet transform in analyzing massive nonstationary data from civil engineering structures, and in structural health diagnosis, is how to select the right wavelet. The question of which wavelet function is appropriate for processing and analyzing the nonstationary data in civil engineering structures has not been clearly addressed, and no clear guidelines or rules have been reported in the literature to show how the right wavelet is chosen. Therefore, this study aims to address an important question in this regard by proposing a new framework for choosing a proper wavelet that can be customized for massive nonstationary data analysis, disturbances separation, and extraction of informative features associated with damage. The proposed method takes into account data type, data and wavelet characteristics, similarity, sharing information, and data recovery accuracy. The novelty of this study lies in integrating multi-criteria which are associated directly with features that correlated well with change in structures due to damage, including common criteria such as energy, entropy, linear correlation index, and variance. Also, it introduces and considers new proposed measures, such as wavelet-based nonlinear correlation such as cosh spectral distance and mutual information, wavelet-based energy fluctuation, measures-based recovery accuracy, such as sensitive feature extraction, noise reduction, and others to evaluate various base wavelets’ function capabilities for appropriate decomposition and reconstruction of structural dynamic responses. The proposed method is verified by experimental and simulated data. The results revealed that the proposed method has a satisfactory performance for base wavelet selection and the small order of Daubechies and Symlet provide the best results, especially order 3. The idea behind our proposed framework can be applied to other structural applications.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI

祝大家在新的一年里科研腾飞
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
水草帽完成签到 ,获得积分10
4秒前
10秒前
11秒前
siyu完成签到,获得积分10
11秒前
Daphne完成签到,获得积分10
12秒前
cocolu应助Daphne采纳,获得20
18秒前
搞怪的天玉完成签到,获得积分20
18秒前
18秒前
橙子完成签到,获得积分10
20秒前
闲听花落完成签到 ,获得积分10
22秒前
24秒前
明理雨筠完成签到,获得积分20
24秒前
瘦瘦的铅笔完成签到 ,获得积分10
24秒前
kirido发布了新的文献求助10
27秒前
冰西瓜完成签到 ,获得积分10
31秒前
32秒前
兴奋元灵完成签到 ,获得积分10
32秒前
小芋头发布了新的文献求助30
35秒前
科研通AI2S应助kirido采纳,获得10
37秒前
Silver完成签到 ,获得积分10
41秒前
lololol完成签到,获得积分10
41秒前
MeSs完成签到 ,获得积分10
49秒前
ffl完成签到 ,获得积分10
49秒前
达克赛德完成签到 ,获得积分10
54秒前
57秒前
1分钟前
焦糖完成签到 ,获得积分10
1分钟前
LLL完成签到 ,获得积分20
1分钟前
大模型应助科研通管家采纳,获得10
1分钟前
1分钟前
SciGPT应助科研通管家采纳,获得10
1分钟前
思源应助科研通管家采纳,获得10
1分钟前
缘星紫发布了新的文献求助10
1分钟前
lololol发布了新的文献求助10
1分钟前
吴昕奕发布了新的文献求助10
1分钟前
人间惊鸿完成签到 ,获得积分10
1分钟前
1分钟前
1分钟前
星辰大海应助搞怪的天玉采纳,获得30
1分钟前
愉快彩虹完成签到,获得积分10
1分钟前
高分求助中
Востребованный временем 2500
Production Logging: Theoretical and Interpretive Elements 2000
Agaricales of New Zealand 1: Pluteaceae - Entolomataceae 1500
Early Devonian echinoderms from Victoria (Rhombifera, Blastoidea and Ophiocistioidea) 1000
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 1000
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 1000
The moderating role of collaborative capacity in the relationship between ecological niche-fitness and innovation investment: an ecosystem perspective 800
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3369078
求助须知:如何正确求助?哪些是违规求助? 2987921
关于积分的说明 8729359
捐赠科研通 2670629
什么是DOI,文献DOI怎么找? 1463007
科研通“疑难数据库(出版商)”最低求助积分说明 677077
邀请新用户注册赠送积分活动 668248