Research on Series Arc Fault Detection and Phase Selection Feature Extraction Method

断层(地质) 电弧故障断路器 特征提取 粒子群优化 小波变换 算法 故障检测与隔离 小波 滤波器(信号处理) 计算机科学 控制理论(社会学) 模式识别(心理学) 工程类 电子工程 人工智能 电压 短路 电气工程 地震学 执行机构 地质学 控制(管理)
作者
H. Gao,Zhiyong Wang,Aixia Tang,Congxin Han,Fengyi Guo,Baifu Li
出处
期刊:IEEE Transactions on Instrumentation and Measurement [Institute of Electrical and Electronics Engineers]
卷期号:70: 1-8 被引量:20
标识
DOI:10.1109/tim.2021.3080376
摘要

Series arc fault is one of the important causes of electrical fire in industrial and mining enterprises. It is of great significance to study the series arc fault detection and phase selection feature extraction method to ensure safe and stable operation of electrical equipment and to guide line maintenance. Arc fault experiments under different current and circuit conditions with a three-phase motor and inverter load were carried out. A new arc fault detection and phase selection method based on single-phase current was proposed. First, wavelet threshold noise reduction, piecewise linear fitting, and first-order difference processing were performed on single-phase current signals to filter out noise interference and highlight fault features. Second, fractional Fourier transform (FRFT) was applied to the first-order differential signal to construct the amplitude matrix of the signal from the time domain to the frequency domain. The local features of the amplitude matrix were effectively extracted, and the feature vector of arc fault with lower dimension was established by combining the two-level block singular value decomposition (SVD) method. Finally, an arc fault detection and phase selection model was established using a support vector machine (SVM) optimized by grid search (GS) and particle swarm optimization (PSO) algorithm. The applicability of the model in single-phase multiload was analyzed. The results showed that the proposed method could realize series arc fault detection and phase selection in three-phase motor and inverter circuits, and it can also be used to single-phase multiload circuits.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Aurora发布了新的文献求助10
刚刚
独步出营完成签到 ,获得积分10
刚刚
1秒前
lx123abc完成签到 ,获得积分10
1秒前
传奇3应助董菲音采纳,获得10
3秒前
夏蓉发布了新的文献求助10
4秒前
无花果应助Lily采纳,获得10
4秒前
4秒前
chen完成签到,获得积分10
5秒前
qp完成签到,获得积分10
6秒前
爆米花应助无尽的派采纳,获得10
8秒前
迟迟不吃吃完成签到 ,获得积分10
9秒前
热心乌完成签到,获得积分0
10秒前
JamesPei应助qp采纳,获得10
11秒前
11秒前
11秒前
入野自由完成签到,获得积分10
13秒前
研友_VZG7GZ应助淡定的天空采纳,获得10
13秒前
董菲音发布了新的文献求助10
14秒前
mi完成签到 ,获得积分10
14秒前
英姑应助科研通管家采纳,获得10
15秒前
无花果应助科研通管家采纳,获得10
15秒前
残幻应助科研通管家采纳,获得10
15秒前
里埃尔塞因斯完成签到 ,获得积分10
15秒前
研友_VZG7GZ应助科研通管家采纳,获得10
15秒前
劲秉应助科研通管家采纳,获得10
15秒前
15秒前
共享精神应助科研通管家采纳,获得10
15秒前
16秒前
16秒前
16秒前
Orange应助科研通管家采纳,获得10
16秒前
斯文败类应助科研通管家采纳,获得10
16秒前
英姑应助科研通管家采纳,获得10
16秒前
那个966应助科研通管家采纳,获得10
16秒前
yanzu应助科研通管家采纳,获得10
16秒前
16秒前
充电宝应助科研通管家采纳,获得10
16秒前
无花果应助科研通管家采纳,获得10
17秒前
科研通AI5应助科研通管家采纳,获得10
17秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2700
Neuromuscular and Electrodiagnostic Medicine Board Review 1000
こんなに痛いのにどうして「なんでもない」と医者にいわれてしまうのでしょうか 510
The First Nuclear Era: The Life and Times of a Technological Fixer 500
Unusual formation of 4-diazo-3-nitriminopyrazoles upon acid nitration of pyrazolo[3,4-d][1,2,3]triazoles 500
岡本唐貴自伝的回想画集 500
Distinct Aggregation Behaviors and Rheological Responses of Two Terminally Functionalized Polyisoprenes with Different Quadruple Hydrogen Bonding Motifs 450
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3671764
求助须知:如何正确求助?哪些是违规求助? 3228378
关于积分的说明 9780106
捐赠科研通 2938766
什么是DOI,文献DOI怎么找? 1610218
邀请新用户注册赠送积分活动 760611
科研通“疑难数据库(出版商)”最低求助积分说明 736096