Research on Series Arc Fault Detection and Phase Selection Feature Extraction Method

断层(地质) 电弧故障断路器 特征提取 粒子群优化 小波变换 算法 故障检测与隔离 小波 滤波器(信号处理) 计算机科学 控制理论(社会学) 模式识别(心理学) 工程类 电子工程 人工智能 电压 短路 电气工程 地震学 执行机构 地质学 控制(管理)
作者
H. Gao,Zhiyong Wang,Aixia Tang,Congxin Han,Fengyi Guo,Baifu Li
出处
期刊:IEEE Transactions on Instrumentation and Measurement [Institute of Electrical and Electronics Engineers]
卷期号:70: 1-8 被引量:20
标识
DOI:10.1109/tim.2021.3080376
摘要

Series arc fault is one of the important causes of electrical fire in industrial and mining enterprises. It is of great significance to study the series arc fault detection and phase selection feature extraction method to ensure safe and stable operation of electrical equipment and to guide line maintenance. Arc fault experiments under different current and circuit conditions with a three-phase motor and inverter load were carried out. A new arc fault detection and phase selection method based on single-phase current was proposed. First, wavelet threshold noise reduction, piecewise linear fitting, and first-order difference processing were performed on single-phase current signals to filter out noise interference and highlight fault features. Second, fractional Fourier transform (FRFT) was applied to the first-order differential signal to construct the amplitude matrix of the signal from the time domain to the frequency domain. The local features of the amplitude matrix were effectively extracted, and the feature vector of arc fault with lower dimension was established by combining the two-level block singular value decomposition (SVD) method. Finally, an arc fault detection and phase selection model was established using a support vector machine (SVM) optimized by grid search (GS) and particle swarm optimization (PSO) algorithm. The applicability of the model in single-phase multiload was analyzed. The results showed that the proposed method could realize series arc fault detection and phase selection in three-phase motor and inverter circuits, and it can also be used to single-phase multiload circuits.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
zyc完成签到,获得积分10
刚刚
深情安青应助咕噜噜采纳,获得10
1秒前
1秒前
1秒前
geopotter完成签到,获得积分10
1秒前
Yinging发布了新的文献求助10
2秒前
无心的青槐完成签到 ,获得积分10
4秒前
123456qi完成签到,获得积分10
4秒前
gaoyang123完成签到 ,获得积分10
5秒前
7秒前
8秒前
9秒前
11秒前
陈陈发布了新的文献求助50
12秒前
想人陪的以云完成签到,获得积分10
13秒前
博弈春秋发布了新的文献求助10
13秒前
14秒前
咕噜噜发布了新的文献求助10
15秒前
巩琦完成签到,获得积分10
18秒前
Creamai发布了新的文献求助10
19秒前
九月发布了新的文献求助10
22秒前
heqizheng完成签到 ,获得积分10
24秒前
carbonhan完成签到,获得积分10
29秒前
33完成签到 ,获得积分10
30秒前
30秒前
青鸟飞鱼发布了新的文献求助10
35秒前
35秒前
霜月十四完成签到,获得积分10
37秒前
37秒前
38秒前
Misty完成签到 ,获得积分0
40秒前
君子兰发布了新的文献求助10
41秒前
wlq完成签到,获得积分10
42秒前
43秒前
包包完成签到 ,获得积分10
43秒前
尊敬的夏槐完成签到,获得积分10
45秒前
wlq发布了新的文献求助10
48秒前
Ive完成签到,获得积分10
48秒前
orixero应助科研通管家采纳,获得10
51秒前
高分求助中
Sustainability in Tides Chemistry 2800
Kinetics of the Esterification Between 2-[(4-hydroxybutoxy)carbonyl] Benzoic Acid with 1,4-Butanediol: Tetrabutyl Orthotitanate as Catalyst 1000
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
Rechtsphilosophie 1000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
Handbook of Qualitative Cross-Cultural Research Methods 600
Very-high-order BVD Schemes Using β-variable THINC Method 568
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3137545
求助须知:如何正确求助?哪些是违规求助? 2788520
关于积分的说明 7787226
捐赠科研通 2444861
什么是DOI,文献DOI怎么找? 1300083
科研通“疑难数据库(出版商)”最低求助积分说明 625796
版权声明 601023