RNAcmap: a fully automatic pipeline for predicting contact maps of RNAs by evolutionary coupling analysis

计算机科学 管道(软件) 核糖核酸 计算生物学 核酸结构 核酸二级结构 蛋白质二级结构 假结 折叠(DSP实现) 数据挖掘 生物信息学 生物 遗传学 基因 电气工程 生物化学 工程类 程序设计语言
作者
Tongchuan Zhang,Jaswinder Singh,Thomas Litfin,Jian Zhan,Kuldip K. Paliwal,Yaoqi Zhou
出处
期刊:Bioinformatics [Oxford University Press]
卷期号:37 (20): 3494-3500 被引量:26
标识
DOI:10.1093/bioinformatics/btab391
摘要

The accuracy of RNA secondary and tertiary structure prediction can be significantly improved by using structural restraints derived from evolutionary coupling or direct coupling analysis. Currently, these coupling analyses relied on manually curated multiple sequence alignments collected in the Rfam database, which contains 3016 families. By comparison, millions of non-coding RNA sequences are known. Here, we established RNAcmap, a fully automatic pipeline that enables evolutionary coupling analysis for any RNA sequences. The homology search was based on the covariance model built by INFERNAL according to two secondary structure predictors: a folding-based algorithm RNAfold and the latest deep-learning method SPOT-RNA.We showed that the performance of RNAcmap is less dependent on the specific evolutionary coupling tool but is more dependent on the accuracy of secondary structure predictor with the best performance given by RNAcmap (SPOT-RNA). The performance of RNAcmap (SPOT-RNA) is comparable to that based on Rfam-supplied alignment and consistent for those sequences that are not in Rfam collections. Further improvement can be made with a simple meta predictor RNAcmap (SPOT-RNA/RNAfold) depending on which secondary structure predictor can find more homologous sequences. Reliable base-pairing information generated from RNAcmap, for RNAs with high effective homologous sequences, in particular, will be useful for aiding RNA structure prediction.RNAcmap is available as a web server at https://sparks-lab.org/server/rnacmap/ and as a standalone application along with the datasets at https://github.com/sparks-lab-org/RNAcmap_standalone. A platform independent and fully configured docker image of RNAcmap is also provided at https://hub.docker.com/r/jaswindersingh2/rnacmap.Supplementary data are available at Bioinformatics online.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
1秒前
1秒前
情怀应助科研小白采纳,获得10
1秒前
谦让寒云完成签到 ,获得积分10
3秒前
可乐发布了新的文献求助10
4秒前
Zo完成签到,获得积分10
4秒前
大模型应助liu采纳,获得10
5秒前
美丽的又菡完成签到,获得积分10
6秒前
7秒前
7秒前
Akim应助Sun采纳,获得10
8秒前
9秒前
Deadman完成签到,获得积分10
9秒前
Ruyii完成签到,获得积分10
10秒前
11秒前
13秒前
活泼蜡烛发布了新的文献求助10
13秒前
13秒前
科研小白发布了新的文献求助10
14秒前
憨憨发布了新的文献求助10
14秒前
MOJIN发布了新的文献求助10
15秒前
ZDY完成签到,获得积分10
15秒前
16秒前
Chelry发布了新的文献求助10
16秒前
路敏完成签到,获得积分10
17秒前
18秒前
天天快乐应助科研通管家采纳,获得10
18秒前
ED应助科研通管家采纳,获得10
18秒前
NexusExplorer应助科研通管家采纳,获得10
18秒前
谦让含玉发布了新的文献求助20
18秒前
丘比特应助科研通管家采纳,获得10
18秒前
CodeCraft应助科研通管家采纳,获得10
18秒前
我是老大应助科研通管家采纳,获得30
18秒前
turquoise应助科研通管家采纳,获得10
18秒前
Jiang应助科研通管家采纳,获得10
19秒前
李健应助科研通管家采纳,获得10
19秒前
李健应助科研通管家采纳,获得10
19秒前
dongjy应助科研通管家采纳,获得20
19秒前
科研通AI2S应助科研通管家采纳,获得10
19秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Indomethacinのヒトにおける経皮吸収 400
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 370
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
Aktuelle Entwicklungen in der linguistischen Forschung 300
Current Perspectives on Generative SLA - Processing, Influence, and Interfaces 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3992229
求助须知:如何正确求助?哪些是违规求助? 3533231
关于积分的说明 11261619
捐赠科研通 3272656
什么是DOI,文献DOI怎么找? 1805867
邀请新用户注册赠送积分活动 882720
科研通“疑难数据库(出版商)”最低求助积分说明 809452