清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

Efficient sampling of high-dimensional free energy landscapes using adaptive reinforced dynamics

元动力学 能源景观 计算机科学 折叠(DSP实现) 扁桃体 能量(信号处理) 分子动力学 自适应采样 采样(信号处理) 效率低下 构造(python库) 聚类分析 统计物理学 算法 计算科学 数学 物理 计算化学 人工智能 统计 化学 微观经济学 经济 程序设计语言 工程类 电气工程 滤波器(信号处理) 热力学 核磁共振 计算机视觉 蒙特卡罗方法
作者
Dongdong Wang,Yanze Wang,Junhan Chang,Linfeng Zhang,Han Wang,E Weinan
出处
期刊:Nature Computational Science [Springer Nature]
卷期号:2 (1): 20-29 被引量:75
标识
DOI:10.1038/s43588-021-00173-1
摘要

Enhanced sampling methods such as metadynamics and umbrella sampling have become essential tools for exploring the configuration space of molecules and materials. At the same time, they have long faced a number of issues such as the inefficiency when dealing with a large number of collective variables (CVs) or systems with high free energy barriers. In this work, we show that with \redc{the clustering and adaptive tuning techniques}, the reinforced dynamics (RiD) scheme can be used to efficiently explore the configuration space and free energy landscapes with a large number of CVs or systems with high free energy barriers. We illustrate this by studying various representative and challenging examples. Firstly we demonstrate the efficiency of adaptive RiD compared with other methods, and construct the 9-dimensional free energy landscape of peptoid trimer which has energy barriers of more than 8 kcal/mol. We then study the folding of the protein chignolin using 18 CVs. In this case, both the folding and unfolding rates are observed to be equal to 4.30~$\mu s^{-1}$. Finally, we propose a protein structure refinement protocol based on RiD. This protocol allows us to efficiently employ more than 100 CVs for exploring the landscape of protein structures and it gives rise to an overall improvement of 14.6 units over the initial Global Distance Test-High Accuracy (GDT-HA) score.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
xiaobai123456完成签到,获得积分10
1秒前
简单的冬瓜完成签到,获得积分10
1秒前
酷波er应助Dongjie采纳,获得10
3秒前
13秒前
Luke发布了新的文献求助10
18秒前
23秒前
邱佩群完成签到 ,获得积分10
36秒前
小蘑菇应助Luke采纳,获得10
39秒前
练得身形似鹤形完成签到 ,获得积分10
43秒前
48秒前
卜哥完成签到,获得积分10
48秒前
guoguo1119完成签到 ,获得积分10
51秒前
moxiang发布了新的文献求助10
52秒前
乐正怡完成签到 ,获得积分0
55秒前
Chelsea完成签到,获得积分10
56秒前
58秒前
英姑应助moxiang采纳,获得10
58秒前
1分钟前
Mia233完成签到 ,获得积分10
1分钟前
Dongjie发布了新的文献求助10
1分钟前
Luke发布了新的文献求助10
1分钟前
喵了个咪完成签到 ,获得积分10
1分钟前
小二郎应助Luke采纳,获得10
1分钟前
chcmy完成签到 ,获得积分0
1分钟前
1分钟前
Luke发布了新的文献求助10
1分钟前
小糊涂完成签到 ,获得积分10
1分钟前
dx完成签到,获得积分10
1分钟前
debu9完成签到,获得积分10
1分钟前
酷波er应助科研通管家采纳,获得10
2分钟前
锅架了完成签到 ,获得积分10
2分钟前
雪酪芋泥球完成签到 ,获得积分10
2分钟前
甜乎贝贝完成签到 ,获得积分0
2分钟前
BINBIN完成签到 ,获得积分10
3分钟前
要减肥的土豆完成签到,获得积分10
3分钟前
3分钟前
lingling完成签到 ,获得积分10
3分钟前
俞若枫发布了新的文献求助10
3分钟前
3分钟前
3分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
From Victimization to Aggression 1000
化妆品原料学 1000
小学科学课程与教学 500
Study and Interlaboratory Validation of Simultaneous LC-MS/MS Method for Food Allergens Using Model Processed Foods 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5645003
求助须知:如何正确求助?哪些是违规求助? 4766938
关于积分的说明 15026102
捐赠科研通 4803370
什么是DOI,文献DOI怎么找? 2568271
邀请新用户注册赠送积分活动 1525661
关于科研通互助平台的介绍 1485212