亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Efficient sampling of high-dimensional free energy landscapes using adaptive reinforced dynamics

元动力学 能源景观 计算机科学 折叠(DSP实现) 扁桃体 能量(信号处理) 分子动力学 自适应采样 采样(信号处理) 效率低下 构造(python库) 聚类分析 统计物理学 算法 计算科学 数学 物理 计算化学 人工智能 统计 化学 微观经济学 蒙特卡罗方法 计算机视觉 核磁共振 程序设计语言 热力学 电气工程 经济 工程类 滤波器(信号处理)
作者
Dongdong Wang,Yanze Wang,Junhan Chang,Linfeng Zhang,Han Wang,E Weinan
出处
期刊:Nature Computational Science [Nature Portfolio]
卷期号:2 (1): 20-29 被引量:62
标识
DOI:10.1038/s43588-021-00173-1
摘要

Enhanced sampling methods such as metadynamics and umbrella sampling have become essential tools for exploring the configuration space of molecules and materials. At the same time, they have long faced a number of issues such as the inefficiency when dealing with a large number of collective variables (CVs) or systems with high free energy barriers. In this work, we show that with \redc{the clustering and adaptive tuning techniques}, the reinforced dynamics (RiD) scheme can be used to efficiently explore the configuration space and free energy landscapes with a large number of CVs or systems with high free energy barriers. We illustrate this by studying various representative and challenging examples. Firstly we demonstrate the efficiency of adaptive RiD compared with other methods, and construct the 9-dimensional free energy landscape of peptoid trimer which has energy barriers of more than 8 kcal/mol. We then study the folding of the protein chignolin using 18 CVs. In this case, both the folding and unfolding rates are observed to be equal to 4.30~$\mu s^{-1}$. Finally, we propose a protein structure refinement protocol based on RiD. This protocol allows us to efficiently employ more than 100 CVs for exploring the landscape of protein structures and it gives rise to an overall improvement of 14.6 units over the initial Global Distance Test-High Accuracy (GDT-HA) score.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
量子星尘发布了新的文献求助10
10秒前
科研通AI2S应助科研通管家采纳,获得10
51秒前
浮游应助科研通管家采纳,获得10
51秒前
浮游应助科研通管家采纳,获得10
52秒前
从容芮应助科研通管家采纳,获得50
52秒前
浮游应助科研通管家采纳,获得10
52秒前
从容芮应助科研通管家采纳,获得50
52秒前
dida完成签到,获得积分10
1分钟前
hjygzv发布了新的文献求助20
2分钟前
KK完成签到,获得积分10
2分钟前
人间理想完成签到,获得积分20
2分钟前
星辰大海应助人间理想采纳,获得10
2分钟前
2分钟前
人间理想发布了新的文献求助10
2分钟前
浮游应助科研通管家采纳,获得10
2分钟前
浮游应助科研通管家采纳,获得10
2分钟前
冷酷愚志完成签到,获得积分10
3分钟前
正直的松鼠完成签到 ,获得积分10
4分钟前
孙老师完成签到 ,获得积分10
4分钟前
浮游应助科研通管家采纳,获得10
4分钟前
量子星尘发布了新的文献求助10
5分钟前
卜哥完成签到,获得积分10
5分钟前
Crazybow5完成签到,获得积分10
6分钟前
光亮静槐完成签到 ,获得积分10
6分钟前
6分钟前
重庆森林发布了新的文献求助10
6分钟前
英姑应助勤恳依霜采纳,获得10
6分钟前
单薄的蓝天完成签到,获得积分10
6分钟前
CipherSage应助科研通管家采纳,获得10
6分钟前
浮游应助科研通管家采纳,获得10
6分钟前
6分钟前
大模型应助重庆森林采纳,获得10
6分钟前
John完成签到,获得积分10
7分钟前
独孤家驹完成签到 ,获得积分10
8分钟前
冷傲迎梅完成签到 ,获得积分10
8分钟前
balko发布了新的文献求助10
8分钟前
科目三应助科研通管家采纳,获得10
8分钟前
浮游应助科研通管家采纳,获得10
8分钟前
浮游应助科研通管家采纳,获得10
8分钟前
8分钟前
高分求助中
Comprehensive Toxicology Fourth Edition 24000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
TOWARD A HISTORY OF THE PALEOZOIC ASTEROIDEA (ECHINODERMATA) 1000
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
World Nuclear Fuel Report: Global Scenarios for Demand and Supply Availability 2025-2040 800
The Social Work Ethics Casebook(2nd,Frederic G. R) 600
Handbook of Social and Emotional Learning 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5116587
求助须知:如何正确求助?哪些是违规求助? 4323211
关于积分的说明 13469976
捐赠科研通 4155574
什么是DOI,文献DOI怎么找? 2277377
邀请新用户注册赠送积分活动 1279208
关于科研通互助平台的介绍 1217236