DAN-Net: Dual-domain adaptive-scaling non-local network for CT metal artifact reduction

工件(错误) 还原(数学) 数字增强无线通信 卷积神经网络 对偶(语法数字) 缩放比例 成像体模
作者
Tao Wang,Wenjun Xia,Yongqiang Huang,Huaiqiang Sun,Yan Liu,Hu Chen,Jiliu Zhou,Yi Zhang
出处
期刊:Physics in Medicine and Biology [IOP Publishing]
卷期号:66 (15): 155009- 被引量:2
标识
DOI:10.1088/1361-6560/ac1156
摘要

Metal implants can heavily attenuate X-rays in computed tomography (CT) scans, leading to severe artifacts in reconstructed images. Several network models have been proposed for metal artifact reduction (MAR) in CT. Despite the encouraging results were achieved, there is still much room to further improve performance. In this paper, a novel Dual-domain Adaptive-scaling Non-local Network (DAN-Net) is proposed for MAR. The corrupted sinogram was corrected using adaptive scaling first to preserve more tissue and bone details. Then, an end-to-end dual-domain network is adopted to successively process the sinogram and its corresponding reconstructed image is generated by the analytical reconstruction layer. In addition, to better suppress the existing artifacts and restrain the potential secondary artifacts caused by inaccurate results of the sinogram-domain network, a novel residual sinogram learning strategy and non-local module are leveraged in the proposed network model. Experiments demonstrate the performance of the proposed DAN-Net is competitive with several state-of-the-art MAR methods in both qualitative and quantitative aspects. The code is available online: https://github.com/zjk1988/DAN-Net.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Mona关注了科研通微信公众号
刚刚
美梦成真福禄寿完成签到 ,获得积分10
1秒前
魔幻幻桃发布了新的文献求助10
1秒前
调皮帽子完成签到,获得积分10
2秒前
第三发布了新的文献求助10
2秒前
123456完成签到,获得积分10
2秒前
3秒前
可怜的小羊完成签到,获得积分10
3秒前
king_of_zju完成签到,获得积分20
3秒前
3秒前
3秒前
3秒前
nkmenghan完成签到,获得积分10
3秒前
3秒前
hanyuemei发布了新的文献求助10
3秒前
打打应助Maer采纳,获得10
4秒前
4秒前
4秒前
Orange应助妖孽的二狗采纳,获得10
4秒前
5秒前
HAHAHAHA完成签到,获得积分10
5秒前
EH完成签到,获得积分10
5秒前
5秒前
研友_ngkEgn完成签到,获得积分10
5秒前
6秒前
6秒前
SYLH应助啦啦啦采纳,获得10
6秒前
6秒前
6秒前
张磊完成签到,获得积分10
7秒前
8秒前
张青青发布了新的文献求助10
8秒前
8秒前
8秒前
艺术大师完成签到,获得积分10
8秒前
小林不熬夜完成签到,获得积分10
8秒前
xxx发布了新的文献求助10
8秒前
学术智子完成签到,获得积分10
9秒前
权翼完成签到,获得积分10
9秒前
cxy发布了新的文献求助10
9秒前
高分求助中
【提示信息,请勿应助】关于scihub 10000
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
Social Research Methods (4th Edition) by Maggie Walter (2019) 2390
A new approach to the extrapolation of accelerated life test data 1000
北师大毕业论文 基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 390
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 360
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4009871
求助须知:如何正确求助?哪些是违规求助? 3549812
关于积分的说明 11303839
捐赠科研通 3284342
什么是DOI,文献DOI怎么找? 1810591
邀请新用户注册赠送积分活动 886393
科研通“疑难数据库(出版商)”最低求助积分说明 811406